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ABSTRACT
Touchscreens are a common fixture in current vehicles. With
autonomous driving, we can expect touch interaction with
such in-vehicle media systems to exponentially increase. In
spite of vehicle suspension systems, road perturbations will
continue to exert forces that can render in-vehicle touch inter-
action challenging. Using a motion simulator, we investigate
how different vehicle speeds interact with road features (i.e.,
speed bumps) to influence touch interaction. We determine
their effect on pointing accuracy and task completion time.
We show that road bumps have a significant effect on touch
input and can decrease accuracy by 19%. In light of this, we
developed a Random Forest (RF) model that improves touch
accuracy by 32.0% on our test set and by 22.5% on our vali-
dation set. As the lightweight model uses only features that
can easily be determined through inertial measurement units,
this model could be easily deployed in current automobiles.

Author Keywords
Touch accuracy; offset correction model; center console;
in-vehicle touchscreens; on board entertainment system; car.

CCS Concepts
•Human-centered computing → Graphical user inter-
faces; Touch screens; HCI theory, concepts and models;
User studies; Ubiquitous and mobile devices;

INTRODUCTION
Direct touch interaction is one reason for the success of mobile
devices such as smartphone and tablets. Their success has
since permeated into other device domains including ATMs,
vending machines, and tabletops to enable intuitive input and
data manipulation. The transportation domain is another area
that is increasingly employing the use of touchscreens. Most
commercial airplanes are already equipped with touchscreens
to support interaction with their media centers. The latest
generation of cars provide touchscreens for a wide range of
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Figure 1. The study setup showing the motion simulator with the car
seat mounted on and the simulated center console next to it.

functions including climate control, music playback, and route
guidance. Vehicle manufacturers such as Tesla Inc. have
prominently integrated touchscreens into their cockpits as
a central interaction device. Tesla’s Model S offers a 17 ′′
capacitive touchscreen to provide an intuitive and extensible
way to interact with the car. With the recent trend towards
autonomous driving, a wide range of further use cases are
envisioned for in-vehicle touchscreens [19].

Previous researchers thoroughly studied touch interaction on
mobile devices. Holz and Baudisch [13] studied the user’s
mental model for touch target selection and the resulting touch
offset in a lab study. They developed a model that aims to
explainhow users select targets on stationary touchscreens.
Similarly, Henze et al. [10] conducted an “in the wild” study
with a large number of users to compensate for the systematic
misalignment between the registered position and the center
of the aimed target. Previous work also investigated the effect
of contextual factors (e.g., the user’s activity) on touch input,
e.g., [17]. However, previous work is focused on handheld
devices; moreover, they often investigate scenarios where the
user is in a stationary setting. Interaction in vehicles is funda-
mentally different. In cars, for example, the user is not only in
forward motion but also experiences additional motion caused
by uneven roads. Therefore, touch interaction in moving vehi-
cles can be expected to pose additional challenges that have
yet to be addressed by most previous work on mobile device
interaction.
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Salmon et al. [22] investigated the effect of vehicle motion on
user interaction with in-vehicle touchscreens. They showed
that driving under high motion conditions increases task com-
pletion time for touch-heavy tasks such as writing, as well as
exerting a negative effect on perceived usability. To design
interaction for in-vehicle touchscreens, we need to understand
the influence of any additional motion on touch interaction and
the extent to which users can compensate for these effects on
their own. Such knowledge will contribute towards the design
of interfaces appropriate scale of the user interface (UI). Addi-
tionally, it could also enable supporting users in compensating
the effects of driving motion on the interaction.

In this paper, we investigate the effect of vertical acceleration
caused by road bumps on the accuracy of in-vehicle touch
interaction with built-in touchscreens. We present the first
study to understand how sudden changes in vertical accelera-
tion affect touch performance. We conducted a controlled lab
study in which participants performed target selection tasks
while seated on a motion platform. The motion platform simu-
lated the vertical acceleration profiles caused by road bumps
while driving with different speeds. While we did not observe
a significant effect on task completion time, we found that
introducing changes in vertical acceleration increase the offset
between the target and the touch point by 19%. Thus, driving
over a bumpy road affects touch interaction up to a level where
users’ performances are noticeably degraded. To improve
touch accuracy in cars, we developed compensatory models
that reduced the predicted touch offset that was expected to
have been caused by road bumps. We present a Random Forest
(RF) model that uses six hand-crafted features and reduces the
touch offset by 24.2% for our test set and by 31.0% for our
validation set. Lastly, we contribute the dataset as well as the
scripts to train the models.

RELATED WORK
The current study investigates the effect of speed bumps on
in-vehicle touch interaction. In this section, we review previ-
ous work on touch interaction in general, different in-vehicle
interaction techniques, and known effects of vehicle motion
on the user.

Improving Touch Accuracy on Mobile Devices
Previous work has thoroughly investigated the inaccuracy of
touch interaction, especially on mobile devices. Touch inaccu-
racy mainly results from a systematic offset due to the user’s
mental model and the approach of touchscreens that translate
touches into a 2D location. Holz and Baudisch [13] investi-
gated the offset for precise target selection and proposed the
projected center model to reduce offsets from 4mm to 1.6mm.
Their model takes visual features of the finger into account to
match the mental model of the users. Moreover, they proposed
a model that explains 67% of the touch inaccuracy that can be
attributed to the fat-finger problem [12].

On a larger scale, Henze et al. [10] conducted “in the wild”
studies to investigate the systematic offset of touches. Using a
game published in Google’s Play Store, they recorded touch
behavior while players pointed at circles that appeared on the
screen. They showed that touch positions are systematically

skewed and developed a compensation function to shift the
users’ touches to reduce the amount of errors by 7.8%. Simi-
larly, they extended the study to touchscreen keyboards and
proposed a model that decreased the typing error rate of users
by 9.1% while increasing the performance by 2.2% [11].

While previous researchers have demonstrated how touch ac-
curacy can be improved on mobile devices, they did not focus
on situations in which situational movements could also af-
fect touch interaction. Moreover, interacting with the mobile
devices (e.g., smartphone or tablet) requires almost no arm
movements, compared to an interaction with a car’s center
console. According to Newton’s second law, the net force on
an object is equal to the mass of the object multiplied by the
acceleration of the object. Since the arm is heavier than the
thumb, the net forces are different for interaction with cars’
center console so that the results for mobile device interaction
of previous work cannot be applied.

Influence of Motion on Touch Accuracy
Previous work by Salmon et al. [23] has shown that driving
motion significantly increases task completion time for touch-
heavy tasks such as writing. Furthermore, it has a negative
effect on usability of touch interfaces. To compensate the
driving motion’s effect on touch accuracy, Ahmad et al. [2]
used a Leap Motion as a pointing gesture tracker to predict
a spatial region of interest, i.e., intended GUI element on the
touchscreen in a car. They used a Bayesian framework to
calculate the probability for each GUI element and evaluate
the course of the trajectory’s velocity and finger angle to GUI
element from start to end of the motion. Furthermore, they
described an evaluation study on the usability and input per-
formance on in-vehicle touchscreens. As a result, they showed
the frequency of failed selections, distances by which users
miss the intended target, and durations of undertaken free
hand positioning gesture to accomplish the selection tasks [3].
To further improve the touch accuracy, they introduced an
intent-aware display to simplify free hand pointing gestures by
determining the user’s intent in the early phase of the pointing
gesture. The study describes the benefits of such a display by
assessing workload and pointing task duration. As a result,
they showed that intent-aware displays significantly reduce
workload and the duration of pointing tasks by 20% [1].

As a solution to counteract touch inaccuracy, Rümelin and
Butz [21] investigated different interaction methods that are
less affected in a driving scenario. In particular, they compared
direct touch buttons by making use of proprioception (sense of
body parts to each other), haptic guidance, and touch gestures.
They found that direct touch provides the best results in terms
of task completion time. Haptic guidance was perceived as
useful, while gestures reduced the visual attention for the
interaction. Moreover, Ecker et al. [6] proposed the use of
a pie menu which provides higher usability and efficiency
especially due to reduced cognitive load while driving.

Closer to our work, Rahmati et al. [20] presented an anti-
shake mechanism against shakes, bumps, and vibration on
mobile devices. They used the accelerometer data to predict
the magnitude of device displacement and adjust the position
of the display area. However, they only shift the screen content



without considering correcting the touch input. Moreover, this
was done on a mobile device which does not require moving
the arm to perform input as it is the case with cars’ center
console.

Summary
In summary, previous papers have proposed models to im-
prove touch accuracy on mobile devices. In comparison to
the interaction with cars’ center console, only fingers move
while arm movements are not necessary. However, the net
force is larger on the arm than on the finger, so that the results
cannot be applied to touch interaction on cars’ center console
which is a distant touchscreen that requires arm movement.
While researchers also investigated this scenario, they used
additional hardware such as the Leap Motion and focused on
target selection as a classification problem. In contrast to their
work, we develop a regression model to reduce the touch offset
for general touch interaction in a driving scenario.

METHOD
In this study, we used speed bumps as a way of understanding
how road features or, in general, vertical acceleration could af-
fect the touch accuracy of in-vehicle touchscreen interactions.
To study the effect of speed bumps on touch interaction on a
car center console, we conducted an experiment in which we
reproduced the vertical acceleration induced by speed bumps
that participants might experience during touchscreen interac-
tions. Using a motion platform, we simulated driving over a
speed bump at five different speeds. During the simulation,
participants selected targets on a touchscreen located in front
of them by pointing with their index fingers.

Design & Task
We used a repeated-measures design with SPEED (5 levels)
and BUMP (2 levels: NoBump andWithBump) as independent
variables. We used five car simulations that differed in terms
of the simulated speed of the car. We varied the speed (SPEED)
using five levels that are expected to commonly occur in daily
driving, namely 10, 20, 30, 40, and 50 km/h. We measured
four dependent variables: task completion time (TCT), touch
offset, touch down events, and touch move events. TCT is
the actual time span between the appearance of the visual
target and the touch event. The Offset is the distance between
a target and the location where the touchscreen registered
the participant’s touch location. Touch down events is the
number of times the screen was touched in an attempt to touch
the target. Lastly, touch move events is the number of move
events of the finger on the screen. The second two dependent
variables will give insights into false inputs and attempts by
the participants to correct the initial touch down event.

The participants were asked to rest their arm on a provided
armrest. Whenever a red crosshair appeared on the touch-
screen, they had to touch the crosshair with their index finger.
Following this, they placed their arm back on the armrest.
We used a total of 30 different touchscreen positions for the
presented crosshair, that was shown on a touchscreen that
represented a center console of a car cockpit. To understand
the effect of a speed bump on touch accuracy, we introduced
the bump stimuli at different timings, in relation to the visual

(a) (b)
Figure 2. The motion platform without the driving simulation equip-
ment for overview purposes.

appearance of the crosshair. We used five timings to stretch
the bump occurrence across the duration of the arm move-
ment towards the target. For the five timings, we used a range
from −1s to 3s in 1s steps in relation to the appearance to the
crosshair.

Apparatus and Stimuli
To simulate real vehicle motion, we used a BOSCH Rexroth
e1500 motion system1, see Figure 2 for a setup overview
before the projection screen, paddles, and steering wheel
were mounted. The motion system is a six-degree-of-freedom
(6DOF) Stewart platform with a fixed seat for the participant.
It can reproduce horizontal linear accelerations up to 7m/s2

and vertical linear accelerations up to 10m/s2, while maxi-
mum angular velocities are 34deg/s, 37deg/s and 41deg/s
for roll, pitch, and yaw rotations respectively. To simulate
the center touchscreen console of a car cockpit, we mounted
a tablet to the front of the seat, with a right offset (distance
to seat center x = 60cm, y = 40cm). To simulate the vehicle
motion profiles, we used a model of a D-class hatchback vehi-
cle that traveled at constant speed. Participants experienced
5 simulated speeds: 10, 20, 30, 40, and 50km/h. Each speed
was simulated for 12min. Throughout the simulation, we sys-
tematically introduced road bumps. As is common practice in
driving simulation, the platform was used to reproduce linear
and angular accelerations. Therefore, while driving at constant
speed, the platform did not move. The visual perception of
self-motion was induced using a large screen that subtended
more than 90◦ field of view of the participant, see Figure 1.

The 30 target positions were arranged in a 5× 6 grid on a
Microsoft Surface Pro 3. The tablet has a touchscreen with
a diagonal of 11.8in. A single target was present at a time.
We used red crosshairs as targets. On average, a new target
was presented every 15s. A speed bump appeared for 90%
of all targets. Thus, 10% of all targets were selected without
experiencing a speed bump to provide a baseline and to avoid
learning effects.

1http://boschrexroth.com/en/xc/industries/
machinery-applications-and-engineering/
motion-simulation-technology/products-and-solutions/
6dof-motion-platform/emotion-1500/index

http://boschrexroth.com/en/xc/industries/machinery-applications-and-engineering/motion-simulation-technology/products-and-solutions/6dof-motion-platform/emotion-1500/index
http://boschrexroth.com/en/xc/industries/machinery-applications-and-engineering/motion-simulation-technology/products-and-solutions/6dof-motion-platform/emotion-1500/index
http://boschrexroth.com/en/xc/industries/machinery-applications-and-engineering/motion-simulation-technology/products-and-solutions/6dof-motion-platform/emotion-1500/index
http://boschrexroth.com/en/xc/industries/machinery-applications-and-engineering/motion-simulation-technology/products-and-solutions/6dof-motion-platform/emotion-1500/index
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Figure 3. A set of possible bump profiles of today’s speed bumps. We
found that the parabolic profile works best with our motion simulator.

Motion Profile
Typically, the height of a speed bump is between 50 and
120mm; its length is between 0.6 and 1m and its width span
the entire road width[8, 18]. Speed bump profiles commonly
employed in road design are circular, parabolic, trapezoidal
(or flat-topped) and sinusoidal (or raised cosine). Examples of
these profiles are presented in Figure 3.

We created motion profiles to simulate speed bumps on the
Bosch motion system. We found that a road bump with a
parabolic profile, 5cm height, and 30cm width (see Figure 3)
generated accelerations suitable for being reproduced with the
motion simulator. Therefore, we chose a parabolic bump.

The accelerations of a vehicle driving over the designed bump
were computed using CarSim 8.2.2 (Mechanical Simulation,
Michigan, USA). First, we created a customized virtual envi-
ronment consisting of a straight, flat road. In one condition,
we added street bumps to introduce vertical acceleration. The
model of a D-class hatchback car was used for the acceleration
recordings. The data was sampled at 1000Hz.

The typical sprung foam and metal seat used in cars attenu-
ates frequencies above about 5Hz [7], while a rigid seat such
as the one mounted on the employed motion simulator (see
Figure 1) will transmit the accelerations unaltered. Therefore,
we filtered the motion profile (the linear accelerations and
angular velocities) using a bandpass filter (4th order IIR filter,
passband between .3 and 5Hz).

Procedure
Prior to testing, we explained the procedure of the study and
provided a general introduction to the motion simulator with
an emphasis on safety procedures. We informed participants
about their right to quit the study and to immediately stop the
simulator by saying “stop.” After signing the consent form,
we collected their demographics and guided them on to the
motion platform. We explained the target selection task in
detail and ensured that participants properly fastened the seat
belt. Participants had to rest their arm on an armrest until a
target appear. We instructed them to touch the target with their
index finger as quickly and as precisely as possible.

Participants
We recruited 18 participants (9 females, 9 males) through the
Max Planck Institute participant database. Participants were
aged from 23 to 39 years (M = 26.67, SD = 3.6). All of them
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Figure 4. The average touch offset for SPEED vs. BUMP.

reported normal or corrected to normal vision. No partici-
pant reported any locomotor disabilities or motion perception
difficulties, and all participants were right-handed.

RESULTS
Due to technical issues while writing the log files, we excluded
the data from 2 participants from the analysis. Therefore,
the analysis is based on 9,154 touch down, and touch up
events and another 52,231 touch movement events. In the
following, whenever Mauchly’s test showed that the sphericity
assumption was violated in the repeated measures analysis of
variance (RM-ANOVA), we report Greenhouse-Geisser (GG)
or Huynh-Feldt (HF) corrected p-values.

Next, we analyzed the TCT using a two-way RM-ANOVA.
There were no statistically significant main effects (BUMP:
F(1,15) = 1.679, p = .215; SPEED: F2.421,36.315 = .427, p =
.789) and also no statistically significant two-way interaction
effect (SPEED × BUMP: F4,60 = .914, p = .462).

To analyze the effect of a bump on touch performance we
needed to ensure that touches in the WithBump condition has
not been performed before the bump occurred. Thus, we
checked if the touch of the participant actually occurred dur-
ing the movement of the platform. We found that 16.8% of
the samples in the WithBump condition occurred before the
bump. Accordingly, we moved these samples into the NoBump
condition. Furthermore, 4.67% of the samples occurred when
the vertical acceleration was less than .05m/s2 for more then
half a second. While it is possible that the touch could have
been influenced by the vertical acceleration, we argue that we
cannot draw conclusions given this limited set of data points.
Therefore, we also removed these samples from the evaluation.
As moving the fastest samples skewed the TCT towards faster
input in the NoBump condition, the following analysis purely
focuses on the touch accuracy.

We first analyzed how often the participants touched the screen
for each attempt to touch the target. We conducted a two-
way RM-ANOVA to determine if SPEED and BUMP have a
significant effect on the number of touch down events. The
analysis revealed a significant effect of BUMP on the num-
ber of touch down events (F1,15 = 14.116, p < .002). How-
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Figure 5. The absolute offset of the touch input for the release touch
event in the five SPEED conditions. Showing only samples where a bump
was present to the participant. The red line is showing the trendline of
the touch offset over time.

ever, we found no statistically significant effect for SPEED
(F1.365,20.479 = .727, p = .445, ε = .445) and no statisti-
cally significant two-way SPEED × BUMP interactions effect
(F4,60 = 2.313, p = .068). Thus, the analysis revealed that par-
ticipants needed to touch the screen significantly more often in
the WithBump conditions (M = 1.012, SD = .043) compared
to the NoBump conditions (M = 1.028, SD = .045).

Extending from the number of touch down events, we analyzed
the number of touch move events between touch down and
touch up. We conducted a two-way RM-ANOVA to determine
whether SPEED and BUMP have a significant effect on the
number of touch move events. Again, the analysis revealed
a statistically significant effect of BUMP on the number of
touch move events (F1,15 = 8.114, p = .012) but no significant
effect of SPEED and also no statistically significant two-way
interaction effect (F1.933,28.993 = 2.375; p = .113, ε = .483
and F1.529,22.939 = 1.187, p = .311, ε = .382, respectively).

Next, we used a two-way RM-ANOVA to determine whether
SPEED and BUMP have a significant effect on the touch offset
– the distance between the position selected by the participant
and the target, see Figure 5. Our analysis revealed a significant
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Figure 6. The average offset of the touch input in y direction, for the
release touch event in the five SPEED conditions. Showing only samples
where a bump was present to the participant.

effect of BUMP on touch offset (F1,15 = 68.441, p < .001)
(NoBump: M = 41.8px, SD = 15.7; WithBump M = 51.9px,
SD = 17.9) and a significant two-way SPEED × BUMP interac-
tions effect (F4,60 = 6.043, p < .001), see Figure 4. However,
we found no significant effect for SPEED (F1.933,28.993 = 1.495,
p = .236, ε = .614).

DISCUSSION
We analyzed if the task completion time (TCT) is influenced
by speed or a bump that could have given rise to a rapid change
in vertical acceleration. Our results show no significant in-
fluence on TCT by either speed or by introducing a bump.
However, we show that in the bump condition, participants
had more touched events on the touchscreen. Thus, partici-
pants touch by accident and then corrected their touch input
immediately. Moreover, we support this by a second ANOVA
which showed that participants also made more movement
on the screen when being subject to a bump. We argue that
the participants hold on to the screen while making adjust-
ments before releasing their finger from this screen. Thus,
we suggest that whenever implementing touch interaction in
cars, the action should always be triggered by touch release
and not on the first contact. Furthermore, we can also extend



from single touch input to gesture input. As we showed more
touch contacts in the bump condition, we argue that gesture
recognizers need to consider “idle input times” where the user
is just holding to overcome an external force on the car, as well
as jitter in the gesture movement due to change in acceleration.

Next, as we now understand that more variation in acceleration
decreases touch accuracy, our goal is to build a model which
counteracts the touch offset. Therefore, we model the offset
based on a set of features to reduce the touch offset. First,
we used visual inspection of the average offset behavior for
the five SPEEDs to better understand the offset before hand-
crafting suitable prediction features, see Figure 5. However,
we found that the absolute offset is not enough to understand
the behavior. Therefore we also inspected the mean y-offset,
see Figure 6. Here, we found that the direction of the offset is
actually correlated with the direction of the vertical accelera-
tion.

OFFSET MODELING
Related work used various approaches to improve touch accu-
racy on mobile devices. Weir et al. [24] initially used Gaussian
processes (GPs) to improve touch accuracy on mobile devices.
Buschek et al. [5] used SVMs to improve input accuracy for
Back-of-Device (BoD) keyboard on tablets.

Since related work has shown numerous ways to improve
touch accuracy without external influences to the touch sur-
face, we will focus on the touch inputs with bump occurrence
only. Furthermore, as detecting a bump using an inertial mea-
surement unit (IMU) is trivial, our correction model can easily
be applied only to cases in which a bump occurred. Thus, the
following models will only be trained on the data where there
was an actual bump.

Model Input Features
For our model to predict the touch offset we used the follow-
ing six hand-crafted features: 1) the speed of the car, 2) the
acceleration of the car at the time of the touch up event, 3) the
time delta to the last local extrema of the vertical acceleration,
4) the acceleration peak of the last local extrema, and 5+6) the
x and y position the point. We included the position of the
touch due to the findings by Avrahami et al. [4], who found
that the offset is influenced by the bezels of the touchscreen.

Modeling
We used common machine learning models established in
previous work and performed a grid search to find the best
hyperparameters for: k-nearest neighbor (kNN), Random For-
est (RF), Support Vector Machine (SVM), Gaussian process
(GP), and Decision Tree (DT). The search for the best hyper-
parameters was optimized by minimizing RMSE. We used a
64% : 18% : 18% participant-split for training, test and vali-
dation set. Resulting in 10 participants for training and three
participants for each test, and validation; respectively 1807,
814, and 735 samples. In the following, we report the best
hyperparameters based on the test set. All hyperparameters
which are not reported are those not changed in respect to

scikit-learn2 version 0.19.1 together with python 3.6. To pre-
vent overfitting on the grid search we used for the targets, we
did not train with the touch points on the middle horizontal
grid line and vertical middle grid line.

Table 1 shows the results of the best performing models. Over-
all, we found that RF performed best in correcting for touch
offset during vehicle motion. In detail, the RF improved the
x-direction of the touch by 38.6% in absolute mean error and
the model to correct the y-offset improved by 23.3%. By com-
bining both models, we improved touch accuracy by 32.%.
The effect of the model on the distribution of the touch inputs
is shown in Figure 7.

In fact, kNN performed worse than the baseline of no correc-
tion. For kNN, k = 21 for the x-correction, and k = 24 for the
y-correction performs the best. All others performed better on
test performance. GP reduced the touch offset by only 1.2%
when using a y normalization. SVM performed the same with
a reduction of also 1.2% when using an “RBF” kernel for
both models and C = 100 for the x-correction and C = 1000
for the y-correction. Next up is the DT with a reduction in
offset of 17.5%. For the x-correction, we found that a MIN
SAMPLES SPLIT of 5 is optimal with a MAX DEPTH of 8 and
for the y-correction we used 20 and 2 respectively. Finally,
we used an RF with 19 estimator and maximal 3 features for
the x-correction and respectively 26 and 2 for the y-correction.
With that, we achieved the best performance and improved
touch accuracy by 32.%.

To conclude our model development, we test the model quality
using the validation set containing three participants which
have not been used for training or testing of the RF model.
Here, we found an RMSE of 5.3mm (M = 3.3, SD = 4.1) for
the x-correction and an RMSE of 7.9mm (M = 5.6, SD = 5.6)
for the y-correction. This results in an overall MAE of 6.9mm
(SD = 5.7) of the validation set, which therefore reduced the
touch offset on the validation set by 22.5%.

2http://scikit-learn.org/
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Figure 7. Resulting inputs when applying the Random Forest (RF)
model to correct the offset. The figure shows all targets collapsed to a sin-
gle target. Additionally, to highlight the distribution of the touches, the
two ellipses present the area that 95% of the touches fall into. With and
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X offset in px Y offset in px Offset in px
Method RMSE MAE SD RMSE MAE SD M SD
Baseline (no correction) 38.23 28.64 25.33 50.45 38.62 25.33 53.11 34.46
k-nearest neighbor (kNN) 35.85 26.20 24.50 53.94 42.36 33.42 54.39 35.20
Gaussian process (GP) 37.55 28.14 24.88 50.08 38.31 32.28 52.49 34.12
Support Vector Machine (SVM) 37.55 28.14 24.88 50.08 38.3 32.28 52.49 34.12
Decision Tree (DT) 22.67 13.71 18.07 48.83 37.60 31.17 43.82 31.30
Random Forest (RF) 27.74 17.59 21.46 41.82 29.62 29.54 38.88 31.75

Table 1. Touch offset errors for the test data with baseline and correction models. All values are reported in pixel, 10 px ∧
= 1.9mm.

OFFSET MODEL DISCUSSION
We showed that the touch performance is significantly influ-
enced by the influence of speed bumps during a typical driving
scenario, but not by vehicle speed per se. Therefore, we used
visual inspection to understand the parameters that influenced
touch performance and derived six features to predictively
model touch offset. We performed a grid search on six ma-
chine learning algorithms to find the best hyperparameters. We
achieved the best test accuracy when using a Random Forest
(RF). By using two RF models to reduce x and y offset, we
could improve the touch accuracy by 32%. However, when
looking at the improvement for x and y independently, we see
that overall the correction of the x (38.6% offset reduction)
offset is better than y (23.3% offset reduction). We argue that
this is not surprising as the speed bump in our setup mainly
changed in acceleration y direction.

We showed that DT can outperform RF but only in the x direc-
tion. Using DT for the x correction and RF for the y correction
separately could, theoretically, improve touch accuracy further.
However, as DT performs worse in the y correction where the
bump has the most impact on the touch accuracy, we argue
that DT cannot model the effect of the bumps properly. As in
more realistic scenarios curves and lane changes affect the x
direction, we hypothesize that DT would also perform worse
than RF in the x direction. Therefore, we suggest not using a
combined model using DT and RF.

We modeled five different speeds and one bump profile. We
showed that speed did not affect the touch performance. Thus,
we argue that when modeling touch behavior in cars it is not
important to study different speeds. Moreover, while we ini-
tially modeled one specific road bump, the actual acceleration
on the participant is indeed more important than both speed
and the bump profile. We argue that as there was no difference
in the five speed conditions, we choose a bump profile which is
sufficient to understand how a range of different bumps would
interferer with the touch accuracy.

While the age of our participants ranged from 23 to 39, we ac-
knowledge that for older drivers it can be beneficial to develop
a new model. However, we expect that older drivers perform
touches with more error. Thus the current model might not
compensate for large error, however would also not overcom-
pensate. Thus, we argue that the current model might not be
perfect for older drivers but still improves the touch accuracy
when using onboard entertainment systems.

Finally, we contribute our offset correction model using RF.
The data set collected in this paper is freely available under the
MIT license and available on GitHub3. The models are using
six hand-crafted features, therefore, we provide the scripts
for prepossessing, train and validation. These models can be
used by researchers in laboratory experiments as well as by
car manufacturers in order to improve touch accuracy.

CONCLUSION
In this paper, we investigated the effect of road bumps on
in-vehicle touch interaction. While we found no significant
effect of the car’s speed or bump on TCT, our analysis revealed
a significant effect of speed bumps on touch accuracy. We
show that touch accuracy is significantly lower when users
experience a road bump while selecting a target. However, we
found no significant effect of the car’s speed on touch accuracy.
To improve users’ accuracy, we show that by using a Random
Forest (RF) model we can reduce touch offset by 32%. The
model corrects the offset based on six hand-crafted features.
Finally, the model can be used by manufacturers to increase
the accuracy of touch input in cars.

In the future, we aim to improve the accuracy of our offset
model based on a more comprehensive data set which can be
collected in the wild using real car consoles. This enables the
use of deep learning which was shown to be superior in previ-
ous work for touch interaction [9, 14, 15, 16]. Further, we aim
to extend this research to understand how different changes in
acceleration affect the touch performance. We envision this
work to inspire touch correction for other vehicles. Similar
to interacting with cars’ touchscreens, users interacting with
onboard entertainment systems for trains and airplanes can
also experience rapid changes in vertical acceleration. We
expect that touch interaction in vehicles is generally affected
by a vehicle’s motion and should be supported by models that
consider this motion to improve touch accuracy.
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