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Zusammenfassung

Mobilgeräte wie Smartphones und Tablets haben mittlerweile Desktop Compu-
ter für ein breites Spektrum an Aufgaben abgelöst. Nahezu jedes Smartphone
besitzt einen berührungsempfindlichen Bildschirm (Touchscreen), welches die
Ein- und Ausgabe zu einer Schnittstelle kombiniert und dadurch eine intuitive
Interaktion ermöglicht. Mit dem Erfolg sind Anwendungen, die zuvor nur für
Desktop Computer verfügbar waren, nun auch für Mobilgeräte verfügbar. Dieser
Wandel steigerte die Mobilität von Computern und erlaubt es Nutzern dadurch
Anwendungen auch unterwegs zu verwenden.

Trotz des Erfolgs von Touchscreens sind traditionelle Eingabegeräte, wie
Tastatur und Maus, aufgrund ihrer Eingabemöglichkeiten immer noch überlegen.
Eine Maus besitzt mehrere Tasten, mit denen verschiedene Funktionen an dersel-
ben Zeigerposition aktiviert werden können. Zudem besitzt eine Tastatur mehrere
Hilfstasten, mit denen die Funktionalität anderer Tasten vervielfacht werden. Im
Gegensatz dazu beschränken sich die Eingabemöglichkeiten von Touchscreens
auf zweidimensionale Koordinaten der Berührung. Dies bringt einige Herausfor-
derungen mit sich, die die Benutzerfreundlichkeit beeinträchtigen. Unter anderem
sind Möglichkeiten zur Umsetzung von Kurzbefehlen eingeschränkt, was Sheider-
mans goldene Regeln für das Interface Design widerspricht. Zudem wird meist
nur ein Finger für Eingabe verwendet, was die Interaktion verlangsamt. Weitere
Herausforderungen, wie das Fat-Finger Problem und die limitierte Erreichbarkeit
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auf großen Geräten, tragen mit Unbequemlichkeiten bei. Neue berührungsba-
sierte Interaktionsmethoden werden benötigt, um die Eingabemöglichkeiten auf
Touchscreens zu erweitern und die Eingabe mit mehreren Fingern, wie es bei
traditionellen Eingabegeräten üblich ist, zu ermöglichen.

In dieser Arbeit wird untersucht, wie es einzelnen Fingern und Teile der
Hand ermöglicht werden kann, Eingaben auf einem mobilen Gerät zu tätigen und
zwischen deren Eingaben zu unterscheiden. Dieses Konzept wird als “Hand-und-
Finger-bewusste” Interaktion bezeichnet. Durch die Erkennung von Hand und
Finger können einzelnen Fingern und Teile der Hand verschiedene Funktionen
zugewiesen werden, was die Eingabemöglichkeit erweitert und viele Herausforde-
rungen der Touch Interaktion löst. Des Weiteren ermöglicht die Anwendung des
Konzepts der “Hand-und-Finger-bewussten” Interaktion auf die komplette Gerä-
teoberfläche nun auch die Verwendung der hinteren Finger zur Eingabe, die bisher
nur das Gerät hielten. Dies addressiert weitere Herausforderungen der Touch
Interaktion und bietet viele Möglichkeiten zur Realisierung von Kurzbefehlen.

Diese Dissertation enthält die Ergebnisse aus zwölf Studien, welche sich auf
die Design Aspekte, die technische Realisierbarkeit und die Benutzerfreundlich-
keit der “Hand-und-Finger-bewussten” Interaktion fokussieren. Im ersten Schritt
wird die Ergonomie und das Verhalten der Hand untersucht, um die Entwicklung
neuer Interaktionstechniken zu inspirieren. Anschließend wird erforscht, wie gut
einzelne Finger und Teile der Hand mit Hilfe von Deep Learning Techniken und
Rohdaten von kapazitiven Sensoren erkannt werden können. Dabei wird sowohl
ein einzelner kapazitiver Bildschirm, als auch ein Gerät, das rundum Berührungen
registriert, verwendet. Basierend darauf präsentieren wir vier Studien, die sich
damit befassen Kurzbefehle von Computer-Tastaturen auf mobile Geräte zu brin-
gen, um die Benutzerfreundlichkeit von Textverarbeitung auf Mobilgeräten zu
verbessern. Wir folgen dabei dem angepassten benutzerzentriertem Designprozess
für die Anwendung von Deep Learning.

Der Kernbeitrag dieser Dissertation erstreckt sich von tieferen Einsichten
zur Interaktion mit verschiedenen Fingern und Teilen der Hand, über einen tech-
nischen Beitrag zur Identifikation der Berührungsquelle mit Hilfe von Deep
Learning Techniken, bis hin zu Ansätzen zur Lösung der Herausforderungen
mobiler Berührungseingabe.
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Abstract

Mobile devices such as smartphones and tablets have replaced desktop computers
for a wide range of everyday tasks. Virtually every smartphone incorporates a
touchscreen which enables an intuitive interaction through a combination of input
and output in a single interface. Due to the success of touch input, a wide range of
applications became available for mobile devices which were previously exclusive
to desktop computers. This transition increased the mobility of computing devices
and enables users to access important applications even while on the move.

Despite the success of touchscreens, traditional input devices such as keybo-
ard and mouse are still superior due to their rich input capabilities. For instance,
computer mice offer multiple buttons for different functions at the same cur-
sor position while hardware keyboards provide modifier keys which augment
the functionality of every other key. In contrast, touch input is limited to the
two-dimensional location of touches sensed on the display. The limited input
capabilities slow down the interaction and pose a number of challenges which
affect the usability. Among others, shortcuts can merely be provided which affects
experienced users and contradicts Shneiderman’s golden rules for interface design.
Moreover, the use of mostly one finger for input slows down the interaction while
further challenges such as the fat-finger problem and limited reachability add ad-
ditional inconveniences. Although the input capabilities are sufficient for simple
applications, more complex everyday tasks which require intensive input, such
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as text editing, are still not widely adopted yet. Novel touch-based interaction
techniques are needed to extend the touch input capabilities and enable multiple
fingers and even parts of the hand to perform input similar to traditional input
devices.

This thesis examines how individual fingers and other parts of the hand can
be recognized and used for touch input. We refer to this concept as hand-and-
finger-awareness for mobile touch interaction. By identifying the source of input,
different functions and action modifiers can be assigned to individual fingers and
parts of the hand. We show that this concept increases the touch input capabilities
and solves a number of touch input challenges. In addition, by applying the
concept of hand-and-finger-awareness to input on the whole device surface,
previously unused fingers on the back are now able to perform input and augment
touches on the front side. This further addresses well-known challenges in touch
interaction and provides a wide range of possibilities to realize shortcuts.

We present twelve user studies which focus on the design aspects, technical
feasibility, and the usability of hand-and-finger-awareness for mobile touch
interaction. In a first step, we investigate the hand ergonomics and behavior
during smartphone use to inform the design of novel interaction techniques.
Afterward, we examine the feasibility of applying deep learning techniques to
identify individual fingers and other hand parts based on the raw data of a single
capacitive touchscreen as well as of a fully touch sensitive mobile device. Based
on these findings, we present a series of studies which focus on bringing shortcuts
from hardware keyboards to a fully touch sensitive device to improve mobile
text editing. Thereby, we follow a user-centered design process adapted for the
application of deep learning.

The contribution of this thesis ranges from insights on the use of different
fingers and parts of the hand for interaction, through technical contributions
for the identification of the touch source using deep learning, to solutions for
addressing limitations of mobile touch input.

6



Acknowledgements

Over the past three years, I had one of the best times of my life working together
with a number of amazing colleagues and friends who inspired me a lot. Without
their support, this work would never have been possible.

First and foremost, I would like to thank my supervisor Niels Henze who
inspired my work and always supported me in the best possible ways to achieve
my goals. Without his support, I would have never came this far. I further thank
my committee Antti Oulasvirta, Michael Sedlmair, and Stefan Wagner for the
great and inspiring discussions. Discussions with Syn Schmitt in the SimTech
milestone presentation, and a number of student peers and mentors in doctoral
consortia at international conferences further shaped my thesis. I would also like
to thank Albrecht Schmidt for all his great support which even goes beyond
research. Moreover, I thank Andreas Bulling for the opportunity to stay another
five months to finalize my thesis.

Before my time as a PhD student, I had the great honor to meet a number of
awesome people who introduced me into the world of Human-Computer Inte-
raction research. I thank Alireza Sahami Shirazi for his outstanding supervision
during my bachelor’s thesis. His inspiration and recommendations played a huge
role in getting me into HCI research. I further thank Tilman Dingler for his
exceptional support and organization which provided me with the opportunity to
write my master’s thesis at the Lancaster University. During my time in Lancas-

7



ter, I had a great and memorable time working with Corina Sas, Nigel Davies,
and Sarah Clinch. I further thank Mateusz Mikusz who helped me finding an
accommodation and ensured that everything was fine.

I had the great pleasure to work with amazingly helpful and skilled colleagues
who shaped my time as a PhD student. I thank my incredible office mates Domi-
nik Weber, Hyunyoung Kim, and Nitesh Goyal for all the inspiring discussions
and for bearing the time with me while I typed on my mechanical keyboard. I am
further thankful for all the collaborations which taught me how to write papers,
build prototypes, and supervise students. In particular, I thank Sven Mayer for
sharing his research experiences and for all the great work together which resulted
in a lot of publications. I further thank Patrick Bader for sharing his endless
knowledge on hardware prototyping and algorithms. I also thank Francisco
Kiss for helping me with his extensive knowledge in electrical engineering and
soldering skills. I am further thankful to Katrin Wolf for inspiring me a lot
with her experiences in mobile interaction, and Lewis Chuang for the valuable
collaboration.

A PhD is not only work but also a lot of fun. I thank Jakob Karolus and
Thomas Kosch for the great and adventurous road trips through the US. I further
thank the rest of the awesome hcilab group in Stuttgart who made every day a
really enjoyable day: Alexandra Voit, Bastian Pfleging, Céline Coutrix, Lars
Lischke, Mariam Hassib, Matthias Hoppe, Mauro Avila, Miriam Greis Nor-
man Pohl, Pascal Knierim, Passant El.Agroudy, Paweł W. Woźniak, Rufat
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1
Introduction

Over two billion people own a mobile device such as a smartphone or a ta-
blet [285]. With their mobility and increasing processing capability, mobile
devices replaced personal computers and laptops for the majority of everyday
computing tasks. Millions of downloads on mobile app stores show that applicati-
ons such as email clients, web browsers, calendars, and even editors for various
media have become viable alternatives to their desktop counterparts. While mo-
bile phones started with arrays of hardware buttons and a small display, recent
smartphones incorporate a touchscreen that combines input and output in a single
interface. This enables users to directly touch elements of the user interface (UI)
and interact with them intuitively similar to physical objects.

With touchscreens, smartphones can be designed as compact and self-contained
mobile devices which leverage the whole front side for input as well as output. As
a consequence, a wide range of applications previously designed for computers
with keyboard and mouse are now also offering touch-based UIs. This transition
increases the mobility of computing devices and enables users to use their device
even while on the move. However, keyboards and mice as input devices are still
superior to touch input since they provide more input capabilities. The difference
is noticeable especially for complex tasks which require high precision (e.g. pla-
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cing the caret in a text) and repetitive actions for which shortcuts are commonly
used (e.g. copy and paste). Limited input capabilities slow down the interaction
and lead to a lack of shortcuts which are fundamental for experienced users as
described by Shneiderman’s golden rules for interface design [209].

In contrast to touchscreens, a computer mouse offers multiple buttons which
enable users to activate different functions at the same cursor position. Similarly,
hardware keyboards offer modifier keys (e.g., Ctrl, Alt, and Shift) which add
additional dimensions to every other key. Touchscreens, however, translate a touch
on the display into a two-dimensional coordinate which is mapped to the UI. While
direct manipulation is powerful, the input’s expressiveness is limited to single
coordinates despite the sheer amount of additional information that a smartphone
could provide about a touch. With 3D Touch1, Apple showed that touch input can
be purposefully extended by a pressure modality based on a proprietary technology
involving an additional sensing layer. While this is the prime commercial example,
the touch input vocabulary on commodity smartphones can also be extended
without additional sensors beyond the touchscreen. In particular, the raw data
of capacitive touchscreens was used for estimating the touch contact size [24],
shape [182], and the orientation of a finger on the display [156, 198, 265]. These
interaction techniques generally leverage properties beyond touch coordinates
to provide additional input dimensions. However, mapping functions to specific
finger postures increases the likelihood of unintended activations since a finger is
now controlling multiple modalities simultaneously.

One solution to lower the likelihood of unintended activations is to identify
the touching finger or part of the hand to avoid interference with the main finger
for interaction (e.g. the thumb). Previous work [38, 63, 82] identified parts
of the finger (e.g. knuckle) or individual fingers to use the touch source as an
additional input modality. However, the number of fingers that can touch the
display during the prevalent single-handed grip [109, 110, 176, 178] is limited
while additional wearable sensors [74, 75, 152] are required for an accurate finger
identification. Differentiating between inputs of multiple fingers and hand parts
while enabling them to interact with the device would profoundly extend the
touch input capabilities. This would make smartphones more suitable for tasks

1https://developer.apple.com/ios/3d-touch/
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which require complex inputs and help to solve common touch input limitations
such as the fat-finger problem [16, 217], reachability issues [20, 133], and the
lack of shortcuts. Without requiring immobile and inconvenient wearable sensors,
or a second hand which is not always available, smartphones could become an
even more viable and mobile replacement for personal computers and laptops.

One step towards this vision was presented by previous work on Back-of-
Device (BoD) interaction (e.g. [16, 39, 46, 133, 197, 250, 269]). With the input
space extended to the rear, fingers that previously held the device are now able
to perform input. However, previous work treated the touch-sensitive rear as an
additional input space but not as an opportunity to enable individual fingers to
perform specific input. Generally, only grip patterns were considered [33, 35,
36], while touch-sensitive areas were limited so that only the index finger can
perform BoD input [10, 46, 133]. Consequently, the input space was extended but
individual fingers and hand parts are still not usable as different input modalities.

Touch inputs from individual hand parts and fingers need to be recognized and
differentiated to use them as unique input modalities. In particular, the raw data
of capacitive sensors (such as from recent touchscreens) contain enough signal
which could be used to infer the source of a touch. With deep learning, robust
and lightweight models could be developed which identify hand parts and fingers
on nowadays’ smartphones. This concept profoundly extends the mobile touch
input vocabulary and will be referred to as hand-and-finger-aware interaction.

Before this concept can be used on commodity smartphones, a wide range
of challenges need to be addressed. First, designing hand-and-finger-aware
interactions with a focus on usability requires an understanding of the behavior
and ergonomics of individual fingers while holding smartphones. There is no
previous work which analyzes the reachable areas for each finger, nor the areas
in which fingers typically move and reside. Second, the technical feasibility of
identifying individual hand parts and fingers needs to be investigated. There is
no system yet which identifies fingers and hand parts with accuracies usable for
realistic everyday scenarios based on the raw data of commodity capacitive touch
sensing technologies. Third, we also need to evaluate the concept of hand-and-
finger-awareness with potential users to gather feedback. This enables to improve
the concept to a level which is ready for the mass-market.
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1.1 Research Questions

In this thesis, we explore the concept of hand-and-finger-aware interaction for
mobile devices. To inform the design and development of hand-and-finger-aware
interaction methods, we present an exploration of six high-level research questions
(RQs). The RQs are presented in Table 1.1.

An important basis to design input on the whole device surface is the analysis
of finger movements which do not require a grip change. Since a grip change
leads to a loss of grip stability and could lead to dropping the device, we need
to understand the range which individual fingers can cover and the areas in
which they can comfortably move (RQ1). In addition to explicit movements,
we further need to understand micro-movements which fingers perform while
interacting with the device. An understanding is vital to minimize unintended
inputs generated by these movements (RQ2).

We use the raw data of capacitive sensors to identify hand parts and fingers
based on deep learning. Before this approach can be leveraged for hand-and-
finger-aware interaction, we need to investigate its feasibility and usability. We
investigate the identification of hand parts and fingers using the raw data of a
single capacitive touchscreen, i.e. on today’s commodity smartphones (RQ3). We
further examine the feasibility of identifying individual fingers on fully touch
sensitive smartphones (RQ4). This would enable the fingers on the rear to perform
input, while the grip can be reconstructed for further interaction techniques.

After understanding the ergonomics and behavior of all fingers while holding
and interacting with smartphones, we evaluate hand-and-finger-aware interaction
for common use cases. This helps to understand how this concept can be leveraged
to further improve mobile interaction. Since touch input on recent mobile devices
poses a number of limitations, we investigate how we could address them on a
fully touch sensitive smartphone. This includes an elicitation of the limitations
and potential solutions proposed by experienced interaction designers (RQ5).
Finally, we focus text editing as a specific use case which the interaction designers
identified as important but still inconvenient due to the limited input capabilities.
In particular, we investigate the design and implementation of shortcuts on fully
touch sensitive smartphones to improve text editing (RQ6).
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Research Question No. Chapter

I. Hand Ergonomics for Mobile Touch Interaction

How can we design Back-of-Device input controls to consider
the reachability of fingers in a single-handed grip?

(RQ1) Chapter 3

How can we design Back-of-Device input controls to minimize
unintended inputs?

(RQ2) Chapter 3

II. Identifying Fingers and Hand Parts

How can we differentiate between individual fingers or hand
parts on a capacitive touchscreen?

(RQ3) Chapter 4

How can we estimate the position of individual fingers and
identify them on a fully touch sensitive smartphone?

(RQ4) Chapter 5

III. Improving Mobile Touch Interaction

Which typical touch input limitations could be solved with a
fully touch sensitive smartphone?

(RQ5) Chapter 5

How can we design and use shortcuts on a fully touch sensitive
smartphone to improve text editing?

(RQ6) Chapter 6

Table 1.1: Summary of research questions addressed in this thesis.

1.2 Methodology

Designing, developing, and evaluating novel interaction techniques is one of the
major topics in human-computer interaction (HCI). The goal of an interaction
technique is to provide users with a way to accomplish tasks based on a combina-
tion of hardware and software elements.

1.2.1 Limitations of the User-Centered Design Process

Previous work in HCI presented novel interaction techniques based on the user-
centered design (UCD) process [102] as shown in Figure 1.1. The UCD process
outlines four phases throughout an iterative design and development cycle to
develop interactive systems with a focus on usability. The process consists of
phases for understanding the context of use, specifying the user requirements,
and developing a solution (i.e., implementing a working prototype) which is
evaluated against the requirements. Each cycle represents an iteration towards a
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solution which matches the users’ context and satisfies all of the relevant needs
(e.g., increasing the usability to a level which satisfies relevant users). The UCD
process focuses on the concept of the solution itself, assuming that specified user
requirements can be unambiguously translated into a working prototype. Indeed,
previous work commonly identified the need and requirements of an interaction
technique and prototyped them using hand-crafted algorithms which range from
simple value comparisons [152], thresholding [24, 74], and transfer functions [39]
through computer vision techniques [93, 96] to kinematic models [23, 202].

With the advent of deep learning, complex relationships and patterns (e.g.,
in sensor data) can be learned from large amounts of data. Due to the increased
availability of computing power and open-source frameworks (e.g., TensorFlow1,
Keras2, PyTorch3), deep learning became a powerful tool for HCI researchers
to develop solutions which are robust, lightweight enough to run on mobile
devices, and do not even require domain knowledge (e.g., for a particular sensor
and its noise). In addition, major parts of the prototypes can be reused even in
market-ready versions of the system by reusing the data for model development
or retraining the model for similar sensors. Prominent examples include object
recognition in image data which even outperform humans [87, 88, 218].

Despite the powerful modeling capabilities, deep learning produces black box
models which can hardly be understood by humans. Due to the lack of knowledge
about a deep learning model’s internal workings, the model needs to be trained,
tested, and validated with potential users within multiple iterations until it achieves
the desired result. In contrast, the UCD process describes the design of a solution
in a single step without involving potential users, an evaluation of its usability in
a subsequent step, and a full refinement in a further iteration. Due to the huge
effort required for developing a deep learning model (i.e. gathering a data set and
multiple iterations of model development), the UCD process needs to be refined
in order to incorporate iterative developments and tests of a model, as well as
evaluating the model’s usability within the whole interactive system. In particular,
the designing solution step needs to incorporate the modeling cycle of a deep
learning process and connect it to the usability aspects of the UCD.

1TensorFlow: https://www.tensorflow.org/
2Keras: https://keras.io/
3PyTorch: https://pytorch.org/
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1.2.2 Limitations of Common Deep Learning Processes

A typical process for developing and evaluating deep learning models consists of
four phases: gathering a representative data set (e.g., through a data collection
study or using already existing ones), preparing the data (e.g., exploring, cle-
aning, and normalizing), training and testing the model, as well as validating
its generalizability on previously unseen data. Thereby, training and testing are
often repeated in multiple iterations to find the most suitable hyperparameters
that lead to the lowest model error on the test set based on trial-and-error and grid
search [101] approaches. A final model validation with previously unseen data
then assesses whether the chosen hyperparameters were overfitting to the test set.

For this process, the deep learning community often use a training-test-
validation split [42] (i.e., training and test set for model development, and the
validation set for a one-time validation of the model) to develop and validate
a model’s performance. However, software metrics alone (i.e., accuracies and
error rates to describe how well the model generalizes to unseen data) do not
describe the usability of a system which is the main focus of the UCD process.
Instead of software metrics, factors such as the effect of inference errors on the
usability (i.e. how well is the perceived usability for a given use case and how
impactful are errors?), the model stability (i.e. how noisy are the estimations
over time for none to small variations?), and the usefulness of the investigated
system should be considered. As systems are used by a wide range of users and
in different scenarios, the validation also needs to assess whether the model can
generalize beyond the (specific and/or abstract) tasks used in a data collection
study. Moreover, while previous work considered accuracies above 80% to be
sufficient [113], sufficiency depends on the use case (i.e. whether the action’s
consequence is recoverable and how much the consequence affects the user)
which can only be evaluated in studies through user feedback.

In summary, a typical process for deep learning describes the iterative nature
of developing and evaluating black box models, but does not consider the usability
of the model and thus of the final system. To apply deep learning techniques in
HCI, we need to refine and combine the UCD process with typical deep learning
processes to consider both the iterative development and evaluation of models, as
well as their usability within the final system.
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Figure 1.1: The user-centered design process as described in ISO 9241-210 [102].

1.2.3 User-Centered Design Process for Deep Learning

We present the user-centered design process for deep learning (UCDDL) which
combines the UCD process with steps required for deep learning and is depicted
in Figure 1.2. The UCDDL consists of five phases, whereas the first two phases
are identical to the traditional UCD process and focus on understanding users as
well as specifying requirements. The next three phases focus on developing a
prototype based on deep learning and evaluating the system based on the factors
described above. In the following, we describe the UCDDL which we apply
throughout this thesis.

1. Understand and specify the context of use. This phase is about identifying
users who will use the system, their tasks, and under which conditions they will
use it (e.g., technical and ergonomic constraints). This step could consist of user
studies to understand the context of use, or based on findings from previous work.

2. Specify user requirements. Based on the identified context, application
scenarios and prototype requirements need to be specified. Based on these
requirements, the solution will be developed and evaluated against.

3. Collect data based on user requirements. Training a deep learning model
requires a representative and large enough data set as the ground truth. Gathering
this data set in the context of a user study involves the design and development
of an apparatus which runs mockup tasks to cover all expected interactions.
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Figure 1.2: Adapted user-centered design process for deep learning in the context of

interactive systems in HCI.

Instructing potential users to perform certain tasks even enables the apparatus to
automatically label each collected sample. This assumes that the experimenter
is carefully observing whether participants actually perform the requested input
correctly (e.g., when instructing participants to touch with a certain finger, it can
be assumed that the captured data samples represent the instructed finger). The
user study needs to be conducted with a representative set of potential users which
cover all relevant factors to collect a sufficient amount of data for model training.

The data set is the foundation of the developed system and needs to be refined
(i.e., extended with more variance by adding users and tasks to cover the specified
requirements) in case the final system does not generalize to new users and tasks
which were specified in the requirements. In this case, another data collection
study needs to be conducted whereas the resulting new data set needs to be
combined with the already existing data set. In addition, the data collected in the
evaluation phase (see Phase 5) could also be used to extend the existing data set.

4. Model development. Based on the data set, this phase applies deep learning
to develop a model which is used by the system. Prior to the actual model training,
the data set often needs to be cleaned (e.g., removing empty or potentially erro-
neous samples for which the label correctness cannot be ensured) or augmented
in case producing the desired amount of data is not feasible (e.g. adding altered
samples such as by rotating the input or adding artificial sensor noise). Further,
we first explore the data set with techniques such as visual inspection, descriptive
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and inferential statistics (e.g. finding correlations), as well as applying basic ma-
chine learning models such as linear regression and SVMs using simple feature
extraction. This step provides an overview of the data set and helps choosing the
optimal model and hyperparameters in later steps. In case only very few samples
could be collected (e.g., due to a high effort for collecting or labeling), these basic
models represent a viable solution.

After data preprocessing and exploration, the data set needs to be split into a
training and test set to avoid the same samples being “seen” during training and
testing. Since the same user could generate highly similar data, the data set should
further be split by participants (instead of by samples as commonly applied).
Previous work commonly used a rate of 80%:20% for a training-test split, and
a 70%:20%:10% for a training-test-validation split. While the deep learning
community commonly use a training-test-validation split to detect overfitting
to the test set due to hyperparameter tuning, the UCDDL process replaces the
validation set with a user study in the next phase. This has two advantages:
First, the full data set can be used to train the model and test it based on the
test set. Second, the user study in the next phase can gather a validation set
with new participants which are usually larger than 10% of the data set. More
importantly, the model’s usability (and also the accuracy) can be evaluated in a
realistic scenario based on feedback from potential users. This is not possible
with a training-test-validation split which focuses only on the modeling aspect.

The goal of the training process is to achieve the highest accuracy on the test
set. The model is then deployed in the respective system (e.g. a mobile device in
this thesis) for the evaluation in the next phase.

5. Model Validation and Design Evaluation. This phase evaluates the system as
a whole with participants who did not participate in the data collection study
(Phase 3). The evaluation focuses on three aspects: (1) a model validation to
achieve the same results as the commonly used training-test-validation approach
(combined with training and test of the previous phase), (2) evaluating the model
usability (and optionally also the model error) in a realistic but controlled scenario
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to focus on individual aspects, and (3) evaluating the system within a common
use case (as specified in Phase 2) to assess the usefulness of the system and the
perceived usability of the model in a uncontrolled scenario.

The model validation replaces the validation set based on similar tasks as used
in the data collection study. In particular, data is collected with the same tasks
which, at the same time, can also be used to introduce participants into the system.
This prepares them for the usability evaluation within realistic scenarios which
consists of a set of tasks that resemble a realistic use case. This set of tasks is
designed to be controlled enough to enable a focus on individual aspects of the
system (e.g., recognition accuracy and usability of certain classes of the model).
For instance, a set of tasks could be designed in a pre-defined order so that model
predictions can be compared with the order to determine the accuracy. To focus
on the perceived usability, tasks could also be designed to expect only one type
of input (i.e. one class). This enables to evaluate false positives for a certain
class while collecting qualitative feedback from the participants about the used
class. More complex outputs, such as regression, could employ additional sensors
such as high-precision motion capture systems as ground truth. For the usability
evaluation of the full system, participants use the prototype to solve tasks in a
fully functional environment (e.g., an application designed for a certain use case,
or even well-known applications). This step is less controlled and focuses on
the system’s usability and usefulness. This results in qualitative feedback and
quantitative measures such as the task completion time or success rate.

In summary, the evaluation in the UCDDL covers the model validation as
well as the usability aspect as described in the UCD process.

1.3 Research Context

The research leading to this thesis was carried out over the course of three
years (2016 – 2018) in the Socio-Cognitive Systems group at the Institute for
Visualization and Interactive Systems. It was additionally part of a project funded
in the Cluster of Excellence in Simulation Technology (SimTech) at the University
of Stuttgart. The presented research was inspired by collaborations, publications,
and discussions with many experts from within and outside the field of HCI.
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Cluster of Excellence in Simulation Technology SimTech is an interdisciplinary
research association with more than 200 scientists from virtually all faculties
of the University of Stuttgart. A major part of the research was conducted in
the project network “PN7 - Reflexion and Contextualisation”1. The research
presented in this thesis underwent an examination in the form of a mid-term
presentation accompanied by Prof. Dr. Syn Schmitt from the Institute of Sports
and Exercise Science. Moreover, intermediate research results were presented at
the annual SimTech Status Seminar.

University of Stuttgart The research presented in this thesis was inspired by
collaborations with colleagues from the University of Stuttgart. With the scientific
expertise and technical knowledge from Patrick Bader, Thomas Kosch, and
Sven Mayer we published six publications which are all in the scope of this
thesis [123–125, 130, 132, 136]. Moreover, the collaborations resulted into further
publications with relevant topics but beyond the scope of this thesis [117, 128,
133, 155, 156, 158–160] and tutorials on “Machine Learning for HCI” organized
at national as well as international conferences [126, 134, 157]. Amongst others,
online magazines and communities such as Arduino2, hackster.io3, and open-
electronics.org4 reported on our prototypes presented in this work.

The research was further inspired by discussions with a broad range of stu-
dent peers and senior researchers at the doctoral consortium at the International
Conference on Human-Computer Interaction with Mobile Devices and Services
(MobileHCI 2016) [122] and the ACM CHI Conference on Human Factors in
Computing Systems (CHI 2018) [121]. In addition, collaborations with Patrick
Bader, Passant El.Agroudy, Tilman Dingler, Valentin Schwind, Alexandra Voit,
and Dominik Weber resulted in publications beyond the scope of this thesis [11,
12, 48, 89, 131, 137, 247].

1http://www.simtech.uni-stuttgart.de/en/research/networks/7/
2http://blog.arduino.cc/2018/10/19/

infinitouch-interact-with-both-sides-of-your-smartphone/
3http://blog.hackster.io/

dual-sided-smartphone-interaction-with-infinitouch-6362c4181fa2
4http://www.open-electronics.org/

infinitouch-is-the-first-fully-touch-sensitive-smartphone/
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External Collaborations Further research beyond the scope of this thesis was
conducted with external collaborators. This includes Katrin Wolf from the Ham-
burg University of Applied Sciences [129], Lewis Chuang from the Max Planck
Institute for Biological Cybernetics [160], Sarah Clinch, Nigel Davies, and Corina
Sas from the Lancaster University [131], as well as Agon Bexheti, Marc Lang-
heinrich, and Evangelos Niforatos from the Università della Svizzera italiana [48].

1.4 Thesis Outline

This thesis consists of seven chapters, the bibliography, and the appendix. We
present the results and evaluations of 12 empirical studies, an extensive review
of related work, as well as a discussion and summary of the findings in the
conclusion chapter. We structure the work as follows:

Chapter 1 - Introduction motivates the research in this thesis and gives an
overview about the research questions and the author’s contributions. We
further present the user-centered design process for deep learning which
we follow throughout this thesis.

Chapter 2 - Background provides an overview of the history of touch inte-
raction, an explanation of capacitive touch sensing, as well as an extensive
review of touch-based interaction techniques on mobile devices and beyond.

Chapter 3 - Hand Ergonomics for Mobile Touch Interaction describes the
results of two studies investigating the behavior and ergonomic constraints
of finger while holding a mobile device.

Chapter 4 - Hand-and-Finger-Awareness on Mobile Touchscreens presents
two models that use the raw data of capacitive touchscreens to recognize
the source of touch, and their evaluations within realistic use cases.

Chapter 5 - Hand-and-Finger-Awareness on Full-Touch Mobile Devices de-
velops a smartphone prototype with touch sensing on the whole device
surface and shows how fingers can be identified. Further, we discuss how
full-touch smartphones can solve recent touch input limitations.
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Chapter 6 - Improving Shortcuts for Text Editing applies the findings from
the previous chapters and presents four studies which cover all steps from
understanding shortcut use on keyboards, a gesture elicitation study, a
data collection study to train a gesture recognizer using deep learning, and
finally an evaluation study.

Chapter 7 - Conclusion and Future Work discusses the findings from the
previous chapters, summarizes them, and provides directions for further
research.
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2
Background and Related Work

While touchscreens enable intuitive interactions, keyboards and mice as input
devices are still superior to touch input as they provide more input capabilities by
enabling the use of multiple fingers. In this thesis, we explore novel touch-based
interaction techniques which differentiate between individual fingers and hand
parts to solve limitations of recent mobile touch interaction. To understand the
technologies used in this thesis, this chapter provides an introduction to touch-
based interaction as well as its history and technical background. We further
review previous work in the domain of extending touch interaction and present
recent challenges of mobile touch interaction which we address in this thesis.

2.1 Background

Touchscreens are ubiquitous in our modern world. According to statista [285],
over 2.5 billion people own a smartphone with a touchscreen as the main interface.
People use smartphones for tasks which were previously exclusive to stationary
computers and in a wide range of scenarios such as while sitting, walking, en-
cumbered, or even during other tasks. The combination of input and output in
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Figure 2.1: The first touchscreen as developed by E.A. Johnson. Image taken

from [106].

a single interface enable intuitive interaction through direct touch. Moreover,
touchscreens enable manufacturers to build compact and robust devices which
use nearly the whole front surface for input and output.

2.1.1 History and Development of Touch Interaction

The first finger-based touchscreen was invented in 1965 by E.A. Johnson [105]
who described a workable mechanism for developing a touchscreen. As with most
consumer devices nowadays, the presented prototype used capacitive sensing.
The inventor envisioned the invention to be used for air-traffic-control, such
as facilitating selections of call signs, flights, and executive actions [106, 184].
Figure 2.1 shows the display configuration for the touch interface. Five years later,
Samuel Hurst and his research group at the University of Kentucky developed the
first resistive touchscreen in 1970. In contrast to capacitive sensing methods as
invented by E.A. Johnson, resistive touchscreens were more durable back then, not
expensive to produce, and operation is not restricted to conductive objects such as
human skin or conductive pens. Nowadays, resistive touch sensing can be found
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mostly in public areas such as restaurants, factories, and hospitals. In 1972, the
first widely deployed touchscreen based on infrared light was developed [55], and
was deployed in schools throughout the united states. This technology employed
fingers interrupting light beams that ran parallel to the display surface.

In 1982, Nimish Mehta [162] developed the first multi-touch device which
used a frosted-glass panel with a camera behind it so that it could detect action
which are recognizable through black spots showing up on the screen. Gestures
similar to today’s pinch-to-zoom or manipulation through dragging were first
presented in a system by Krueger et al. [116]. Although the system was vision-
based and thus is not suitable for touch interaction, many of the presented gestures
could be readily ported to a two-dimensional space for touchscreens. One year
later, the first commercial PC with a touchscreen (Hewlett Packard HP-1501) was
released. The touchscreen is based on infrared sensing but was not well perceived
at that time as graphical user interfaces were not widely used. In 1984, Bob
Boie presented the first transparent multi-touch screen which used a transparent
capacitive array of touch sensors on top of a CRT screen. Similarly, Lee et
al. [138] developed a touch tablet in 1985 that can sense an arbitrary number of
simultaneous touch inputs based on capacitive sensing. Using the compression of
the overlaying insulator, the tablet is further capable of sensing the touch pressure.
Recent iPhones incorporate this input modality under the name Force Touch.

In 1993, the Simon Personal Communicator from IBM and BellSouth (see
Figure 2.2) was released, which was the first mobile phone with a touchscreen. Its
resistive touchscreen enabled features such as e-mail clients, a calendar, address
book, a calculator, and a pen-based sketchpad. In the same year, Apple Computer
released the MessagePad 100, a personal digital assistant (PDA) that can be
controlled with a stylus but without a call functionality. The success of PDAs
continued with the Palm Pilot by Palm Computing as the handwriting recognition
worked better for the users. However, in contrast to smartphones nowadays, all
these devices require the use of a stylus.

In 1999, FingerWorks, Inc. released consumer products such as the Tou-
chStream and the iGesture Pad that can be operated with finger inputs and ge-

1http:
//www.hp.com/hpinfo/abouthp/histnfacts/museum/personalsystems/0031/
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Figure 2.2: Simon Personal Communicator, the first smartphone with a touchscreen

by IBM and BellSouth. Image taken from arstechnica1.

stures. The company was eventually acquired by Apple Inc. to contribute to the
development of the iPhone’s touchscreen and the Apple’s Multi-Touch trackpad.
Based on the work by Jun Rekimoto [194], Sony introduced a first flat input sur-
face in 2002 that provides two-dimensional images of the changes in the electric
field. This technology is known as mutual capacitive sensing and the electric
field changes represent low-resolution shapes of conductive objects touching the
sensor. In contrast to camera-based approaches, all elements are integrated into a
flat touch panel which enables the integration into mobile devices. Touchscreens
incorporated in smartphones nowadays are based on this technology.

In the subsequent years, new touch-based technologies were introduced but
these are not employed on smartphones due to space constraints. For example,
Jeff Han introduced multitouch sensing through frustrated total internal reflection
(FTIR) which is based on infrared (IR) LEDs and an IR camera below the touch
surface to sense touch input. This enables building high-resolution touchscreens
and is less expensive than other technologies. In 2008, the Microsoft Surface 1.0,
a table-based touchscreen, was released that integrated a PC and five near-infrared
cameras to sense fingers and objects placed on the display. Three years later,
the second version of the Microsoft Surface (now called Microsoft PixelSense)
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was released that is based on Samsung’s SUR40 technology. This technology
represents a 40-inch interactive touch display in which pixels can also sense
objects above it. This enables to build a less bulky tabletop without cameras
below the display and generates a 960×540 px touch image that can be used for
object tracking.

2.1.2 Capacitive Touch Sensing

Since the invention of the first touchscreen, a wide range of further touch sensing
technologies have been presented. While many of these approaches provide
a higher touch sensing resolution and expressiveness compared to the earlier
invented capacitive and resistive touchscreens, they are less suitable for mobile
devices due to their immobile setup. Amongst others, these technologies include
frustrated total internal reflection [77], surface acoustic waves [142], camera-
based touch sensing (e.g. RGB [225], depth [252]), infrared touch sensing [2],
and inductive touch sensing [43].

Due to their compact size, robustness, and responsiveness, capacitive tou-
chscreens are widely used in mobile devices nowadays. In particular, mobile
devices use projected capacitive touchscreens which sense touches with a higher
resolution than surface capacitance which is often used on larger surfaces with
four electrodes at each corner. Figure 2.3 sketches the functional principle of
a mutual capacitive touchscreen. Mutual capacitance is one of the two types
of the projected capacitance principle and is commonly used in recent mobile
devices [15]. The touch sensor itself consists of three layers; an electrode pattern
layer in the middle which is responsible for the actual touch sensing and two
protective layers. The touch sensor with all of its layers is transparent and placed
on top of the display unit such as a liquid crystal display (LCD). The electrode
pattern layer is connected to a touch controller and consists of conductive wires
made out of indium tin oxide (ITO) which is transparent and sketched on the
bottom left of Figure 2.3.

The controller measures the change of coupling capacitance between two
orthogonal electrodes, i.e. intersections of row and column pairs [50]. These
measurements result in a low-resolution finger imprint which is shown on the
bottom right of Figure 2.3 and referred to as a capacitive image [73, 99, 136, 156].
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Figure 2.3: Components of a mutual capacitive touchscreen and the resulting ca-

pacitive image. Figure adapted and extended based on http://www.eizo.com/
library/basics/basic_understanding_of_touch_panel/.

Capacitive touchscreens of commodity smartphones comprise around 400 to 600
electrodes (e.g., 15×27 electrodes with each being 4.1×4.1mm on an LG Nexus
5). The touch controller translates the measurements into a 2D coordinate which
is then provided to the operating system (indicated as a red dot in the Figure).

While touch interaction on recent mobile devices is based solely on the 2D
coordinate of a touch (i.e. the red dot), the remaining information about a touch
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is omitted. In this thesis, we present a number of approaches which uses the
capacitive images of commodity mutual capacitive touchscreens in mobile devices
to infer the source of a touch such as different fingers and hand parts.

2.2 Related Work

Related work presented a wide range of novel interaction techniques to extend
the touch input vocabulary on mobile devices. Following the structure of this
thesis, we first describe the ergonomics and physical limitations of the hand
for interaction with mobile devices. Secondly, we describe interaction methods
that improve and extend the interaction with a touchscreen (on the front side)
on mobile devices. Lastly, we go one step further and review related work
that presents novel interaction methods based on touch input beyond the front
touchscreen (e.g., the back and edges of a device).

2.2.1 Hand Ergonomics for Mobile Touch Interaction

In contrast to stationary input devices such as a hardware keyboard and mouse,
users usually hold and interact with mobile devices simultaneously. This poses
a wide range of challenges. When using a smartphone in the prevalent single-
handed grip [54, 109, 110, 176], the same hand is used for holding and interacting
with the device. This limits the fingers’ range and generates unintended inputs due
to the continuous contact with the device. In the following, we review previous
work on ergonomics of the hand when holding a smartphone and supportive finger
movements which users perform during interaction.

Placement, Movement, and Range of Fingers

To inform the design of novel interaction methods on mobile devices, an under-
standing of finger placement, movement and their ranges is vital. A wide range of
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heuristics have been proposed by designers over the years1,2,3,4,5. Previous work
further investigated the range of the thumb to inform the design of mobile user
interfaces [20]. Since BoD and edge input became more relevant in recent years,
all other fingers need to be investigated to inform the design of fully hand-and-
finger-aware interaction methods. While previous work showed where fingers are
typically placed when holding a smartphone [276], there is no work that studied
the areas reachable by all fingers on mobile devices. This thesis contributes to
this research area by studying finger placements, ranges and reachable areas of
all fingers on mobile devices.

An important basis to inform the placement of on-screen interaction elements
and on-device input controls is the analysis of areas on the device that can be
reached by the fingers. Bergstrom-Lehtovirta and Oulasvirta [20] modeled the
thumb’s range on smartphones to inform the placement of user interface elements
for one-handed interaction. To predict the thumb’s range, the model mainly
involves the user’s hand size and the position of the index finger which is assumed
to be straight (adducted). For the predicted range of the thumb, they introduced
the term functional area which is adapted from earlier work in kinesiology and
biomechanics. In these fields, possible postures and movements of the hand
are called functional space [118]. Thumb behavior was further investigated by
Trudeau et al. [231] who modeled the motor performance in different flexion
states. Park et al. [189] described the impact of touch key sizes on the thumb’s
touch accuracy while Xiong et al. [268] found that the thumb develops fatigue
rapidly when tapping on smaller targets.

Besides the thumb, previous work investigated the index finger during smartp-
hone interaction. Yoo et al. [276] conducted a qualitative study to determine the
comfortable zone of the index finger on the back of the device. This was done
without moving the finger and by asking users during the study. From a biomecha-
nical perspective, Lee et al. [139] investigated the practicality of different strokes

1https://www.uxmatters.com/mt/archives/2013/02/
how-do-users-really-hold-mobile-devices.php

2http://blog.usabilla.com/designing-thumbs-thumb-zone/
3http://scotthurff.com/posts/facebook-paper-gestures
4https://www.smashingmagazine.com/2016/09/

the-thumb-zone-designing-for-mobile-users/
5https://medium.com/@konsav/-55aba8ed3859
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for BoD interaction. Similarly, prior work found that using the index finger for
target selection on the BoD leads to a lower error rate than using the thumb for
direct touch [143, 256]. Wobbrock et al. [256] showed that both the thumb on
the front and index finger on the BoD perform similarly well in a Fitts’ law task.
Wolf et al. [260] found that BoD gestures are performed significantly different
than front gestures. Corsten et al. [40, 41] used BoD landmarks and showed that
the rear position of the index finger could be accurately transferred to the thumb
by pinching both fingers.

Since different grips can be used as an input modality [254], a wide range of
prior work sought an understanding of how users hold the phone while using it.
Eardly et al. [53, 54] explored hand grip changes during smartphone interaction
to propose use cases for adaptive user interfaces. They showed that the device
size and target distance affects how much users tilt and rotate the device to reach
targets on the touchscreen. Moreover, they investigated the effect of body posture
(e.g., while standing, sitting, and lying down) on the hand grip, and showed that
most grip movements were done while lying down followed by sitting and finally
standing [52].

Previous work in biomechanics looked into different properties of the hand.
Napier et al. [175] investigated two movement patterns for grasping objects which
they call precision grip and power grip. People holding objects with the power
grip use their partly flexed fingers and the palm to apply pressure on an object.
Sancho-Bru et al. [205] developed a 3D biomechanical hand model for power
grips and used it to simulate grasps on a cylinder. However, as smartphones are
not necessarily held in a power grip, this model cannot be applied to smartphone
interaction. Kuo et al. [118] investigated the functional workspace of the thumb by
tracking unconstrained motion. This is the space on the hand which is reachable
by the thumb. Brook et al. [26] introduced a biomechanical model of index finger
dynamics which enables the simulation of pinch and rotation movements. As
holding a smartphone and interacting with the touchscreen introduces additional
constraints to all fingers, these results cannot be applied to model the hand grip
and ergonomics.
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Supportive Finger Movements

Although users intend to move only the thumb to perform single-handed input on a
front touchscreen, they unconsciously perform a wide range of further “supportive”
movements. These movements maintain the balance and grip on the device,
increase the reachability of the thumb on the display (e.g., through tilting [34] and
grip shifts [53, 54]), or are unavoidable due to the limited movement independence
of fingers (e.g., moving one finger also moves other fingers [76]). An important
basis to design BoD input controls that take unintended input into account is the
analysis of supportive micro-movements during common smartphone tasks.

Tilting the device is one type of supportive micro-movements which is used to
increase the thumb’s reachability on the display. Previous work found that users
tilt the device towards their thumb to reach farther distanced targets (e.g., at the
top left corner) and away from their thumb to reach targets at the bottom right
corner [34, 54]. Eardley et al. [52–54] referred to all movements which increase
the reachability as “grip shifts” and explored them for different device sizes
and tasks. Based on video recordings with manually identified key points and
accelerometer values, they quantified the number of grip shifts during common
smartphone tasks. They found that more grip shifts occurred with increasing
device sizes while the amount of tilt and rotation varied with grip types and phone
sizes. Moreover, they showed that the body posture (e.g., sitting and standing)
affects the device movements, suggesting that device sizes and body postures
need to be considered for exploring supportive micro-movements. While these
findings explain the device movements, no previous work investigated the actual
finger movements which could generate unintended input on the device surface.

The limited independence of finger movements causes another type of sup-
portive micro-movements. Previous work in biomechanics found that even when
asked to move just one finger, humans usually also produce motion in other
fingers [76]. The limited independence of the fingers is due to biomechanical
interconnections such as connected soft tissues [242] and motor units [207]. Mo-
reover, Trudeau et al. [231] found that the thumb’s motor performance varies
by the direction and device size during single-handed smartphone use while
the motor performance is generally greater for two-handed grips [230]. While
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Sancho-Bru [205] presented a biomechanical model of the hand for the power
grip [175], an application thereof is not possible for an investigation of supportive
micro-movements as smartphones are not used solely in a power grip.

One chapter of this thesis contributes to the understanding of supportive
micro-movements by studying how fingers on the rear move while interacting
with the front side.

2.2.2 Novel Touch-Based Interaction Methods

Recent touchscreens are designed to register two-dimensional locations of touches.
These locations are provided to the application layer of the operating system to
enable interaction with the user interface. Besides the two-dimensional location
of touches, a wide range of touch properties are available that can be used to
increase the input vocabulary of touch interaction. Well-known examples from
recent operating systems are the long-press that leverages the dwell time and
gestures that are based on subsequent touch locations. While these additions
are beneficial, they require additional execution time. Moreover, the touch input
vocabulary is still limited when compared to other input devices such as hardware
keyboards or computer mouses. In the following, we describe related work that
improves touch input using data from touchscreens and their mobile device.

Extending Touch Interaction on Mobile Touchscreens

Previous work presented a wide range of approaches to extend the touch input
vocabulary on mobile touch-based devices. In the following, we describe two
common approaches that do not require additional sensors beyond a touchscreen.
This includes approaches that are (1) based solely on two-dimensional touch
locations available on all touchscreen technologies, and (2) based on the raw data
of capacitive touchscreens representing low-resolution fingerprints of touches.

Using the Two-Dimensional Location of Touches Approaches to extend the
touch input vocabulary based on only the two-dimensional location of touch
inputs can readily be deployed on any touch-based mobile device. Since all tou-
chscreens already provide the two-dimensional location of touches, no additional
information and sensors are required.
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Single taps are mostly used for selection-based interaction such as selecting
an action assigned to a button. Gestures play an important role in making user
interfaces more intuitive (e.g., moving objects by dragging them) and in provi-
ding shortcuts for a faster access to frequently used functions (e.g., launching
applications [190], searching [141]). A gesture can be performed by moving
the finger while in contact with the touchscreen. This generates a trajectory of
two-dimensional locations of touches that are then interpreted as gestures by
the system. Previous work in HCI invested a sheer amount of effort to improve
gesture-based interfaces, such as through methodologies for gesture design [237,
238, 255, 256], simple gesture recognizers for fast prototyping purposes [5, 235,
257], improving gesture memorability [173, 277], and through design guidelines
for gesture designs [4, 278]. However, gestures have the disadvantage that they
require additional execution time as well as enough screen space for the execution.
Moreover, a comprehensive set of gestures would lead to conflicts (e.g., uninten-
ded activations) and the accuracy of gesture recognizers would decrease due to
ambiguity errors.

Previous work proposed a wide range of interaction methods to enrich touch
interaction beyond gesture shapes and types. Amongst others, a gesture starting
from the device’s bezel can be distinguished from a gesture starting on the
touchscreen itself. This differentiation was used in previous work to provide
shortcuts to the clipboard [200] and to improve one-handed interaction by offering
reachability features [112].

Moreover, researchers implemented simple heuristics to use the finger orien-
tation as an input dimension. Roudaut et al. [202] presented MicroRolls, a
micro-gesture that extends the touch input vocabulary by rolling (i.e., changing
pitch and roll angle of the finger) the finger on the touchscreen. Since touchscreens
translate touch contact areas to two-dimensional locations based on the area’s
centroid [23, 98, 202], a trajectory of two-dimensional locations is generated
through the changing contact area induced by finger rolling. MicroRolls uses
this trajectory to recognize rolling movements with accuracies of over 95%. Ho-
wever, this interaction techniques cannot be used during a drag action since the
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segmentation of the gesture requires down and up events. Thus, Bonnet et al. [23]
presented ThumbRock which improves MicroRolls by additionally using the size
of the contact area as reported by Apple iOS.

Using the Raw Data of Capacitive Touchscreens Nowadays, the majority of
touchscreens incorporated in mobile devices are based on mutual capacitive
sensing. Taking the measurements of all electrodes of the touchscreen, a two-
dimensional image (referred to as capacitive image [73, 99, 136, 156]) can
be retrieved as shown in Section 2.1.2. Previous work predominantly used an
LG Nexus 5 since its touch controller (Synaptics ClearPad 3350) provides a
debugging bridge to access the 8-bit capacitive images with a resolution of
27×15 px at 6.24ppi. While capacitive images can be used to recognize body
parts for authentication purposes [73, 99], previous work also used the resulting
area for interaction methods. Amongst others, Oakley et al. [182] used the area of
touches on smartwatches to provide shortcuts to pre-defined functions. Similarly,
Boring et al. [24] used the size of the contact area to enable one-handed zooming
and panning.

To extend the touch input performed with fingers, researchers developed
machine learning models that infer additional properties based on the capacitive
images. Amongst others, machine learning models can be used to estimate the
pitch1 and yaw2 angle of a finger touching the display [156, 265]. In contrast
to the approach on the tabletop [244], machine learning was necessary as no
high-resolution contact area is available. Moreover, Gil et al. [63] used basic
machine learning techniques to identify fingers touching the display. However,
they showed that a usable accuracy can only be achieved with exaggerated poses
on smartwatches so that each finger touched with a distinct angle. Recent Huawei
devices incorporate KnuckleSense, an additional input modality that differentiates
between touches made by fingers and knuckles. This technology is based on
FingerSense, a proprietary technology by Qeexo3 of which no technical details
are publicly available.

1Pitch angle: Angle between the finger and the horizontal touch surface.
2Yaw angle: Angle between the finger and the vertical axis.
3http://qeexo.com/fingersense/
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Extending Touch Interaction through Additional Sensors

Previous work and smartphone manufacturers used additional built-in sensors
to augment touch input. Amongst others, this includes sensors to measure the
applied force, microphone recordings, inertial measurement units (IMUs), and
pre-touch sensing. Moreover, we give an overview of external sensors that were
used in previous work to extend touch input.

Force and Pressure Pressure input offers an additional input dimension for
mobile touch interaction. Since interaction can be performed without moving
the finger, this input dimension benefits user interfaces on small displays and
situations in which finger movements are not desirable. Using the force applied on
the touchscreen of a mobile device was first used by Miyaki and Rekimoto [167] to
extend the touch input vocabulary. Based on force sensitive resistors between the
device and a back cover, they measured the changing pressure levels to prototype
one-handed zooming on mobile devices. Stewart et al. [223] investigated the
characteristics of pressure input on mobile devices and found that a linear mapping
of force to value worked the best for users. Researchers further used the shear
force, the force tangential to the display’s surface, to extend pressure input.
Amongst others, Harrison and Hudson [80] developed a touchscreen prototype that
uses the shear force for interaction while Heo and Lee [90] augment touch gestures
by sensing normal and tangential forces on a touchscreen. Beyond the touchscreen,
force can also be used for twisting the device as an input technique [68, 69, 119].

With the iPhone 6s, Apple introduced the pressure input dimension under the
name Force Touch. Based on force sensors below the touchscreen or a series of
electrodes on the screen curvature (Apple Watch), they used the additional input
dimension to enable users to perform secondary actions such as opening a context
menu or peeking into files. To estimate the force of a touch without additional
sensors, Heo and Lee [91] used the built-in accelerometer and position data of the
touchscreen.

Acoustics The sound resulting from an object’s impact on the touchscreen
can be used to differentiate between the source of input. By attaching a medical
stethoscope to the back of a smartphone, Harrison et al. [82] showed the feasibility
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of differentiating between different parts of the finger (e.g., pad, tip, nail, or
knuckle) as well as objects (e.g., stylus). Lopes et al. [145] used a similar
approach and augmented touch interaction based on a contact microphone to
sense vibrations. With this, they showed that different hand placements on the
touch surface (e.g., tap with a finger tip, knock, slap with the flat hand, and a
punch) can be reliably recognized. Similarly, Paradiso et al. [188] used four
contact piezoelectric pickups at the corners of a window to differentiate between
taps and knocks.

In general, approaches based on acoustic sensing have shown to be reliable
to identify the source of touch. However, since microphones are required to
continuously capture the acoustics, these approaches are prone to errors in noisy
situations. Thus, they are not suitable for interaction on mobile devices such as
smartphones and tablets.

Physical Device Movement A wide range of previous work combined touch
input with the built-in accelerometer of mobile devices. Hinckley et al. [92]
introduced the terminology of touch-enhanced motion techniques which combine
information of a touch and explicit device movements sensed by the IMU. For
example, a touch and a subsequent tilt sensed by the accelerometer can be used
to implement one-handed zooming while holding an item on the touchscreen
followed by shaking the device can be used to offer a shortcut to delete files.
Similar gestures were explored especially for interaction with wall displays using
a mobile phone. Hassan et al. [86] introduced the Chucking gesture in which
users tap and hold an icon on the touchscreen, followed by a toss measured by the
accelerometer to transfer the file to the wall display. To transfer items between
public displays using a mobile phone, Boring et al. [25] proposed a similar gesture
in which users hold an object on the touchscreen and move the mobile devices
between displays. Researchers also used the built-in accelerometer to enhance
text entry on mobile devices. This includes the use of the device orientation to
resolve ambiguity on a T9 keyboard [249] and the improvement of one-handed
gestural text input on large mobile devices [273].

In contrast, motion-enhanced touch techniques combine touch input and
the implicit changes of the accelerometer values to infer touch properties. For
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example, a soft tap can be differentiated from a hard tap through the impact of
the touch. Going one step further, Seipp and Devlin [213] used touch position
and accelerometer values to develop a classifier that determines whether users are
using the device in a one-handed grip with the thumb or in a two-handed grip with
the index finger. With this, they achieved an accuracy of 82.6%. Similarly, Goel
et al. [66] used the touch input and device rotation to infer the hand posture (i.e.,
left/right thumb, index finger) with an accuracy of 87%. By attaching a wearable
IMU to the user’s wrist, Wilkinson et al. [251] inferred the roll and pitch angle of
the finger, and the force of touches described by the acceleration data.

Proximity Touch Sensing Marquardt et al. [150] proposed the continuous in-
teraction space, which was among the first models that describe the continuity
between hover and on-screen touches. They proposed a number of use cases that
enables users to combine touch and hover gestures anywhere in the space and
naturally move between them. Amongst others, this includes raycasting gestures
to extend reachability, receiving hints through hovering over UI elements [37],
and avoiding occlusion by continuing direct touch actions in the space above.
Spindler et al. [222] further proposed to divide the interaction above the table-
top into multiple layers while Grossman [71] explored hover interaction for 3D
interaction.

Hover information can also be used to predict future touch locations. Xia
et al. [264] developed a prediction model to reduce the touch latency of up to
128ms. To avoid the fat-finger problem, Yang et al. [270] used a touch prediction
to expand the target as the finger approaches. Similarly, Hinckley et al. [93]
explored hover interaction on mobile devices and proposed to blend in or hide
UI components depending on whether a finger is approaching or withdrawn (e.g.,
play button in a video player appears when the finger is approaching). Since a
finger can also be sensed above the display, Rogers et al. [198] developed a model
for estimating the finger orientation based on sensing the whole finger on and
above a touchscreen.

Previous work presented different approaches to enable proximity touch
sensing. The SmartSkin prototype presented by Rekimoto [194] calculates the
distance between hand and surface by using capacitive sensing and a mesh-shaped
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antenna. Annett et al. [3] presented Medusa which is a multi-touch tabletop with
138 proximity sensors to detect users around and above the touchscreen. On the
commercial side, devices such as the Samsung Galaxy S4 and the Sony Xperia
Sola combine mutual capacitance (for multi-touch sensing on the touchscreen),
and self-capacitance (generates a stronger signal but only senses a single finger)
to enable hover interaction1.

Fiducial Markers and Capacitive Coupling A large body of work coupled exter-
nal sensors and devices with touchscreens to extend the touch input vocabulary.
The focus lies especially on identifying the object touching the display, such as
different fingers, users, and items.

A common approach to identify objects on the touchscreen is to use fiducial
markers. These markers assign a unique ID to an object through a uniquely
patterned tag in the form of stickers [108, 195], NFC tags [240, 241], RFID
tags [183], unique shapes [85], and through rigid bodies of conductive areas
attached to objects (“capacitance tags”) [194]. While these approaches are only
suitable for objects due to the attachment of tags, previous work investigated
the use of capacitive coupling (i.e., placing an electrode between object and
the ground to change the electric field measured by the touchscreen) to reliably
identify users [243] and authenticate them with each touch [100]. Similarly,
DiamondTouch [47] identifies users based on an electric connection to the chair
they are sitting on while Harrison et al. [81] used Swept Frequency Capacitive
Sensing (SFCS) which measures the impedance of a user to the environment
across a range of AC frequencies. Using the same technology, Sato et al. [206]
turned conductive objects to touch-sensitive surfaces that can differentiate between
different grips (e.g., touch, pinch, and grasp on a door knob).

Active Sensors To identify different fingers on the display, previous work used
a wide range of different sensors. Approaches that achieved high accuracies
include the use of IR sensors [74, 75] and vibration sensors [152] mounted on
different fingers. Further approaches include electromyography [19], gloves [149]

1https://www.theverge.com/2012/3/14/2871193/
sony-xperia-sola-floating-touch-hover-event-screen-technology
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and RFID tags attached to the fingernail [239]. To avoid instrumenting users with
sensors, previous work also used a combination of cameras attached to a mobile
device and computer vision to identify fingers [245, 284]. For example, Zheng et
al. [284] used the built-in webcam of laptops to identify fingers and hands on the
keyboard. Using depth cameras such as the Microsoft Kinect provides additional
depth information for finger identification. Amongst others, these were used
by Murugappan [172] and Wilson [252] to implement touch sensors. The Leap
Motion1 is a sensor device that uses proprietary algorithms to provide a hand
model with an average accuracy of 0.7mm [248]. Colley and Häkkilä [38] used a
Leap Motion next to a smartphone to evaluate finger-aware interaction. While
these are all promising approaches, they are not yet integrated into mass-market
devices since wearable sensors are limiting the mobility while sensors attached to
the device (e.g., cameras) are increasing the device size.

Extending Touch Interaction on Tabletops

Previous work presented a wide range of novel interaction methods based on
images of touches provided by touchscreens. Researchers predominantly focused
on tabletops that provide high-resolution images of touches [8, 56, 62] through
technologies such as infrared cameras below the touch surface or frustrated total
internal reflection [77]. The Microsoft PixelSense is a common example and
provide high-resolution images with a resolution of 960×540 px (24ppi). This
enabled a wide range of novel interaction methods including the development
of widgets triggered by hand contact postures [154], using the forearm to access
menus [114], using the contact shape to extend touch input [18, 30], and gestures
imitating the use of common physical tools (e.g., whiteboard eraser, eraser, camera,
magnifying glass) to leverage familiarity [83]. The latter was commercialized by
Qeexo as TouchTools2.

Based on a rear-projected multi-touch table with a large fiber optic plate as
the screen, Holz and Baudisch developed a touchscreen that senses fingerprints
for authentication [96]. This is possible due to a diffuse light transmission
while the touchscreen has a specular light reflection. Other approaches for user

1https://www.leapmotion.com/
2http://qeexo.com/touchtools/
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PPPPType
Position Front side Back side Top side Bottom side Left side Right side

Touch

Fingerprint scanner
Secondary screen j

Hardware buttons
(e.g., back, home)

Fingerprint scanner
BoD Touch a, j [16, 46]
Heart rate sensor f [151]

BoD touchscreen m

- - - Edged display b

Buttons
Hardware keyboard b

Home/Menu button c

Back/Recent button c

BoD Button d

Volume button l
Power

button e -
Volume buttons
Bixby button f

Power button
Volume buttons
Shutter button g

Slide - - - - Silent switch e -
Pressure Force Touch [272] - - - Side pressure h [59, 221]
Scrolling Trackball i LensGesture [266] - - - Scrolling wheel b

Tapping - BoD taps [197] Edge taps [161]

Misc

Front camera
Front speaker
Light sensor

Distance sensor
Notification LED

Back camera
Back speaker

Torchlight
E-ink display k

Microphone
Audio port
USB port g

Microphone
Speaker

USB port
Audio port

- -

a OPPO N1, b RIM BlackBerry 8707h, c HTC Tattoo, d LG G-Series, e iPhone 5,
f Samsung Galaxy S8, g Nokia Lumia 840, h HTC U11, i Nexus One, j LG X,

k YotaPhone 2, l Asus Zenfone, m Meizu Pro 7.

Table 2.1: Types of interaction controls beyond the touchscreen that are presented

in prior work and in recent or past smartphones. While some are not intended for

interaction initially (e.g., camera), these sensors could still be used for interaction in the

future, e.g. [266].

identification on tabletops are based on users’ back of the hand captured by a
top-mounted camera [193], by their hand geometry [22, 208], their shoes based on
a camera below the table [196], through personal devices [1], tagged gloves [148],
finger orientations [45, 280], IR light pulses [163, 199], and through capacitive
coupling [47, 243].

2.2.3 Interacting with Smartphones Beyond the Touchscreen

Since users are holding the smartphone during the interaction, the touchscreen on
the front is not the only surface that could be used for input. Previous work and
smartphone manufacturers presented a wide range of input mechanisms beyond
the touchscreen on the device surface. While the power and volume buttons are
integral parts of a smartphone nowadays, we describe further input mechanisms
in the following.
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On-Device Input Controls

Previous work and manufacturers presented a broad range of input controls for
smartphones of which we provide an overview in Table 2.1. We categorized them
by their location on the device, and by the expected type of input.

Current smartphones such as the iPhone 7 and Samsung Galaxy S8 incorpo-
rate fingerprint sensors below the touchscreen or on the back of the device. These
are mainly used for authentication purposes but can also recognize directional
swipes that act as shortcuts for functions such as switching or launching applica-
tions. Previous work envisioned different functions that can be triggered using
a fingerprint sensor [185]. Due to a small number of devices that support any
form of interaction on the rear, researchers presented different ways to use built-in
sensors for enabling BoD interaction, including the accelerometer [140, 197] to
recognize taps and the back camera to enable swipe gestures [266]. Previous
work also presented a number of smartphone prototypes that enable touch input
on the whole device surface, including the front, back and the edges [127, 132,
168]. This enables a wide range of use cases which includes touch-based authenti-
cation on the rear side to prevent shoulder surfing [46], improving the reachability
during one-handed smartphone interaction [133], 3D object manipulation [10,
214], performing user-defined gesture input [215] and addressing the fat-finger
problem [16]. Recently, Corsten et al. [39] extended BoD touch input with a
pressure modality by attaching two iPhones back-to-back.

Before HTC recently introduced Edge Sense, pressure as an input modality
on the sides of the device have been studied in previous work [59, 95, 221, 253] to
activate pre-defined functions. Legacy devices such as the Nexus One and HTC
Desire S provide mechanical or optical trackballs below the display for selecting
items as this is difficult on small displays due to the fat-finger problem [16].
As screens were getting larger, trackballs became redundant and were removed.
Similarly, legacy BlackBerry devices incorporated a scrolling wheel on the right
side to enable scrolling.

For years, smartphones featured a number of button controls. Amongst others,
this includes a power button, the volume buttons, as well as hardware buttons
such as the back, home and recent buttons on Android devices. As a shortcut
to change the silent state, recent devices such as the iPhone 7 and OnePlus 5
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feature a hardware switch to immediately mute or unmute the device. Moreover,
the Samsung Galaxy S8 introduced an additional button on the left side of the
device as a shortcut to the device assistant while other devices incorporate a
dedicated camera button. Since a large number of hardware buttons clutter the
device, previous work used the built-in accelerometer to detect taps on the side of
the device [161].

Back-of-Device Prototyping Approaches

The simplest and most common approach for BoD interaction is to attach two
smartphones back-to-back [39, 46, 214, 261, 262]. However, this approach
increases the device thickness which negatively affects the hand grip and inte-
raction [133, 226]. This is detrimental for studies that observe the hand behavior
during BoD interaction, and could lead to muscle strain. To avoid altering the de-
vice’s form factor, researchers built custom devices that resemble smartphones [10,
33, 228]. However, these approaches mostly lack the support of an established
operating system so that integrating novel interactions into common applications
becomes tough. As a middle ground, researchers use small additional sensors
that barely change the device’s form factor. These include 3D-printed back cover
replacements to attach a resistive touch panel [133], and custom flexible PCBs
with 24 [168, 169] and 64 [33] square electrodes. However, neither the panel size
nor the resolution is sufficient to enable precise finger-aware interactions such as
gestures and absolute input on par with state-of-the-art touchscreens.

Beyond capacitive sensing, researchers proposed the use of inaudible sound
signals [174, 203, 246], high-frequency AC signals [283], electric field tomo-
graphy [282], conductive ink sensors [67], the smartphone’s camera [263, 266],
and other built-in sensors such as IMUs and microphones [70, 201, 279]. While
these approaches do not increase device thickness substantially, their raw data lack
details for precise interactions or inferring the touching finger or hand part. While
using flexible PCBs as presented in previous work is a promising approach, the
resolution is not sufficient. Further, previous work used proprietary technologies
so that other researchers cannot reproduce the prototype to investigate interactions
on such devices. There is no previous work that presents a reproducible (i.e., uses
commodity hardware) full-touch smartphone prototype.

2.2 | Related Work 49



2.3 Summary

In this chapter, we discussed the background and previous work on mobile
touch interaction. We started this chapter with the history of touch interaction
and background of capacitive touch sensing, which forms the foundation of the
technical parts of this work. Moreover, we reviewed previous work with a focus
on extending mobile touch interaction by hand-and-finger-awareness.

Following the structure of this thesis, we first reviewed previous work on
hand ergonomics for mobile touch interaction. Previous work investigated the
range of the thumb for single-handed touch interaction to inform the design of
touch-based user interfaces. However, there is neither work that does the same for
all other fingers nor the area in which fingers can move without a grip change. An
understanding thereof is vital to inform the design of fully hand-and-finger-aware
input methods especially on fully touch sensitive smartphones. We investigate
the areas which can be reached by all fingers without a grip change and their
maximum range by addressing RQ1. In addition to the reachability aspect, the
fingers on the back move unintentionally, amongst others, to maintain a stable
grip [52, 54], increase the thumb’s range [34, 54], or as a consequence of the
limited independence between the finger movements [76]. These movements
cause unintended inputs on fully touch sensitive smartphones which frustrate users
and renders all BoD input techniques ineffective. Ideally, BoD input controls need
to be placed so that they are reachable without a grip change but also in a way
which minimizes unintended input. This requires an investigation of supportive
micro-movements, their properties, as well as the areas in which they occur. We
address this with RQ2.

In the second part of the related work, we reviewed different approaches to
extend the touch input vocabulary. A wide range of approaches use different
sensors to infer additional properties of a touch. For example, this includes
the finger orientation, pressure, shear force, size of the touch area, as well as
identifying the finger or part of the hand which performed the touch. However,
the presented approaches have practical disadvantages which affect the usability,
convenience, and mobility. Input techniques which infer additional properties
of a touch (e.g., finger orientation, pressure, or size of touch area) extends the
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input vocabulary and its expressiveness. However, they also pose limitations since
specific finger postures may now trigger unwanted actions. In contrast, input
techniques which differentiate between the source of input (e.g., identifying indi-
vidual fingers and hand parts) do not interfere with the main finger for interaction
and thus do not have these limitations. While previous work [63, 82] presented
approaches to identify fingers and hand parts, they are either based on immobile
and inconvenient technologies (e.g., wearable sensors [152], cameras [38, 284],
stethoscope [82]) or are not accurate enough for interaction [63]. We address
RQ3 by presenting a novel deep learning based approach which uses the raw data
of a capacitive touchscreen on commodity smartphones to differentiate between
touches of different sources.

In the third part of the related work, we presented an overview of already
existing on-device input controls either incorporated on commodity smartphones
or presented in related work. Since a part of the presented input techniques in this
thesis is based on a fully touch sensitive smartphone, we further reviewed previous
work which presented approaches to implement BoD input. These approaches
are mostly based on stacking devices or attaching additional touchpads, which
increases the size of the device significantly and thus affects the usual hand grip
and the usability. Addressing RQ4, we present a fully touch sensitive smartphone
prototype with the size of a normal smartphone and which identifies the finger
performing input on the whole device surface.

From previous work, we identified main challenges of recent touch input
which includes the lack of expressiveness and shortcuts, the limited reachability,
and the lack of input precision which is also known as the fat-finger problem [217].
Addressing RQ5, we interview experienced interaction designers to elicit novel
ways to solve the challenges of touch input based on fully touch sensitive smartp-
hones and the concept of hand-and-finger-awareness. With text editing being
inconvenient on mobile devices due to limited input capabilities and precision,
RQ6 focuses on this specific use case with a series of studies representing all
steps of the UCDDL to design and implement text editing shortcuts on fully touch
sensitive smartphones.
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3
Hand Ergonomics for Mobile
Touch Interaction

By combining input and output in a single interface, touchscreens enable users to
interact with devices which are merely larger than the touchscreen itself. Although
they already existed since 1965 [105], it was not until the release of the iPhone in
2007 that touchscreens became the main interfaces of mobile devices. Since then,
numerous design refinements and a large body of research on understanding the
human factors of mobile interaction have been carried out to inform the design of
touch-based interfaces which became intuitive and usable as they are nowadays.

Similarly, the first mobile phone prototype with BoD input was presented
in 2003 [94] with a wave of follow-up work being published in the years after
(e.g. [10, 16, 39, 46, 133, 168, 169, 197, 224, 250, 269]). Despite a wide range
of exciting use cases and the technology for simple BoD input being readily
available, the concept of enabling all other fingers to interact on the back side is
still not widely adopted yet. Most of the previous work on BoD input focused
on novel use cases and interaction techniques while the human factors such as
ergonomic constraints and unintended inputs are not investigated yet.
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Without understanding how hands behave while performing BoD input, we
cannot design usable BoD input. Since users prefer to use mobile devices in
a single-handed grip [54, 109, 110, 176], the same hand is used for holding
and interacting with the device. Although input on the back and edges more
than doubles the surface for input, the effectively usable surface is constrained
by how far fingers can reach while holding a device. Moreover, since finger
movements are shown to have limited independence [76] while being occupied
with maintaining a stable grip, another challenge is to understand and avoid the
unintended input that they generate while the thumb performs input on the front.
With the research presented in this chapter, we contribute with design implications
which helps designing usable BoD input in the prevalent single-handed grip.

Parts of this chapter are based on the following publication:

H. V. Le, S. Mayer, P. Bader, and N. Henze. “Fingers’ Range and Comfortable Area for
One-Handed Smartphone Interaction Beyond the Touchscreen.” In: Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems. CHI’18. New York, NY,
USA: ACM, 2018. DOI: 10.1145/3173574.3173605a

H. V. Le, S. Mayer, and N. Henze. “Investigating Unintended Inputs for One-Handed
Touch Interaction Beyond the Touchscreen.” In: Currently under review.

aVideo Preview: https://www.youtube.com/watch?v=Kzp-sO7mIbo

3.1 Interaction Beyond the Touchscreen

Almost every smartphone incorporates additional input controls beyond the tou-
chscreen. Physical buttons provide shortcuts to change the device volume and
power state while fingerprint scanners enable authentication as well as simple
BoD gestures. These input controls extend touchscreen input and are accessible
even without looking at the device. Recent smartphones offer an increasing num-
ber of further input controls such as dedicated buttons for the device assistant,
silent switches, and even secondary touchscreens on the rear (e.g., Meizu Pro 7
and YotaPhone). Previous work explored further promising use cases and showed
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that BoD input can provide additional shortcuts [185, 197, 212, 215], increase the
thumb’s reachability on the touchscreen [133, 276], and even solve touch input’s
limitations such as the fat-finger problem [16, 250].

Additional input controls beyond the touchscreen clearly improve mobile
interaction but also pose new challenges. When using a smartphone in the
prevalent single-handed grip [54, 109, 110, 176], the same hand is used for holding
and interacting with the device. This limits the fingers’ range and generates
unintended inputs due to the continuous contact with the device.

3.1.1 Reachability of Input Controls

With the increasing size of recent smartphones, it becomes difficult to reach
input controls distributed across the whole device surface in the prevalent single-
handed grip. Often, users are required to stretch the thumb in an uncomfortable
way or change the grip in which they hold the device. These movements are
detrimental as they not only cause muscle strains but also lead to dropping the
device. Researchers and manufacturers explored a number of approaches to
replace thumb stretching and grip changes with more subtle actions to increase
reachability. For example, Apple introduced the Reachability feature which
enables users to shift down the screen content by half its size with a double tap
on the home button. Similarly, researchers presented techniques based on BoD
gestures [133, 271] and shortcuts [34, 112] to move the screen content to a more
reachable position. However, these approaches require additional actions from
the users which also affects the usability and work only for touchscreens.

Another branch of research focused on understanding the ergonomic con-
straints of the hand while holding a smartphone. The findings then enable to
design user interfaces which preemptively avoid grip changes. An important
basis to design input controls for one-handed interaction is the analysis of finger
movements that do not require a grip change. While Bergstrom-Lehtovirta and
Oulasvirta [20] modeled the thumb’s maximum range, there is neither previous
work that does the same for all other fingers nor the area in which fingers can
move without a grip change. Yoo et al. [276] explored the area in which the index
finger can rest comfortably, but on a qualitative basis without moving the finger.
However, the movement of fingers provides important implications for the design
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of on-device input controls. Specifically, they reveal the areas that users can reach
without losing grip stability and the maximum range coverable by fingers without
grip changes. Despite their relevance for the design of one-handed interaction, no
previous work explored the areas and maximum ranges that all fingers can reach
without grip changes using freeform tasks (RQ1).

3.1.2 Unintended Inputs

Since the same hand is used for holding and interacting with the device, the
fingers on the back often perform supportive micro-movements while the thumb is
performing input on the front side. With supportive micro-movements, we refer to
finger movements on the back and sides which support the thumb in performing
input, such as by maintaining a stable grip [52, 54], increasing the thumb’s input
precision and range [34, 54], or as a consequence of the limited independence
between the finger movements [76]. Especially with input controls on the rear
or even fully touch sensitive smartphones, supportive micro-movements cause
unintended inputs which frustrate users and lead to embarrassing mistakes.

Avoiding unintended inputs is vital for the usability of BoD interaction. An
important basis to minimize unintended inputs is an understanding of supportive
micro-movements which occur while holding the device and interacting with it.
Previous work analyzed supportive micro-movements by quantifying the number
of grip shifts on different smartphones through video observations [53, 54] and
built-in motion sensors [34, 52, 54]. However, we have no understanding of how
fingers move and unintended inputs that they would generate on the rear. To
help designers minimizing unintended inputs for BoD interaction, we need to
understand the areas in which supportive micro-movements occur, as well as the
behavior of fingers within these areas on different device sizes and usage scenarios
(RQ2). In conjunction with our findings on the reachability of all fingers, this
would enable designers to design BoD input controls which consider unintended
inputs as well as reachability during single-handed use.
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3.2 Study I: Range and Comfortable Area of Fingers

We use a quantitative approach to empirically study the areas that can be reached
without changing the hand grip and losing grip stability (comfortable area), and
the range that can be covered with no grip change and stretched fingers (maxi-
mum range) while holding the smartphone one-handed in portrait mode. In the
following study, participants performed two tasks to explore the comfortable area
and the maximum range on four smartphones with different sizes. We recorded
all finger movements using a high-precision motion capture system. Based on
the results, we derive four generalizable design implications for the placement of
on-device input controls that are suitable for one-handed interaction. These can
increase the usability especially in scenarios where one hand is occupied.

3.2.1 Study Design

The study has two independent variables, PHONE and FINGER. For PHONE,
we used four smartphones in different sizes (see Table 3.1 and Figure 3.1). For
FINGER, we used all five fingers of the right hand. This results in a 4×5 within-
subject design. We counterbalanced PHONE using a Balanced Latin square and
used a random order for FINGER. For each condition, participants performed two
independent tasks to explore the comfortable area and to determine the maximum
range. During these tasks, they were seated in front of the motion capture system
(see Figure 3.2b) on a chair without armrests. We did not instruct participants to
use specific hand grips as this would influence the participant’s usual hand grip
and thus the generalizability of the study results.

Device Abbr. Height Width Depth Area %

Samsung Galaxy S3 mini S3 12.16 6.30 0.99 76.61 100.0
Samsung Galaxy S4 S4 13.70 7.00 0.79 95.90 125.2
OnePlus One OPO 15.29 7.59 0.89 116.05 151.5
Motorola Nexus 6 N6 15.93 8.30 1.01 132.22 172.6

Table 3.1: Sizes of smartphones (in cm) used in both studies. The front and back

surface area are shown in in cm2 (width × height). The percentage column shows the

increase in area starting from the S3.
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Figure 3.1: Smartphones used in both studies: Samsung Galaxy S3 Mini, Samsung

Galaxy S4, OnePlus One, and Motorola Nexus 6.

3.2.2 Apparatus

Table 3.1 shows the four phones that were used. We specifically selected these
devices to get a steady increase in device width as this dimension has a noticeable
influence on the grip. In the remaining work, we will use the following abbreviati-
ons for the devices: S3, S4, OPO and N6. The OPO and N6 are representative for
recent large flagship smartphones (e.g., Samsung S8 Plus, One Plus 5 or iPhone 7
Plus; on average 154% of the S3’s area) while the S4 and OPO are representative
for their standard versions (e.g., Samsung S8, OnePlus X, or iPhone 7; on average
126% of the S3). The S3 and S4 are representative for small devices such as the
iPhone SE, LG Nexus 5, or Sony Xperia Compact (on average 109% of the S3).
While laser-cut device mockups could have been an alternative, we used real
devices out-of-the-box to keep the participant’s hand grip as realistic as possible.
Due to a neglectable difference in device thickness (SD=1.0mm), different device
shapes (e.g., edges and corners) should not affect the grip and finger movements
as the edges are clamped between fingers and palm.

To record finger motions with sub-millimeter accuracy, we used an OptiTrack
motion capture system with eight cameras (OptiTrack Prime 13W capturing at
240 fps). The cameras were firmly mounted to an aluminum profile structure
as shown in Figure 3.2b. To enable these infrared cameras to record the finger
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(a) Marker Placements (b) Motion Capture Setup

Figure 3.2: Study setup: (a) motion capture system consisting of 8 OptiTrack Prime

13W , (b) reflective markers on a participant’s hand, and (c) a participant exploring the

comfortable area of the thumb on a Nexus 6 in front of the motion capture system.

movements, we attached 26 skin adhesive markers (4mm hemispheres) on all
joints of the hand similar to Feit et al. [58] as shown in Figure 3.2a. Additionally,
we attached four markers on the top part of each smartphone which enables us to
track the phones in six degrees of freedom (DoF).

3.2.3 Procedure

After participants signed the consent form, we collected demographic data using a
questionnaire and measured their hand size and finger lengths. We then proceeded
to attach 26 skin adhesive markers on their right hand to enable motion tracking.
We handed out an instruction sheet explaining the procedure of the study and
the two tasks which should be performed. The instruction sheet further explains
three criteria that participants should fulfill while performing the tasks. This
includes (1) holding the device one-handed (2) in portrait mode, and (3) not
moving any finger except the one that the experimenter asks to move. We further
gave participants a demonstration of the required movements and asked them to
do it tentatively to ensure that everything is fully understood.
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After handing a smartphone to the participants, we asked them to loosen and
move their fingers on the device surface and hold the device as they would usually
do afterward. To avoid influencing their usual grip after the experimenter hands
out the device, we further asked participants to perform movements as if they
would unlock the device with unlocking patterns to start using the device. In the
first task, we collected data about the comfortable area of each finger. This is
the area that one can reach without changing the hand grip and without losing
the stable and firm grip through, e.g., overstretching. We instructed participants
to freely move the specified finger and cover all areas on the device that they
can reach without changing the initial grip, losing grip stability or overstretching
fingers to a degree which leads to straining the muscles. We further hinted that
different finger flexion degrees should be probed to fill out the explored area and
that they should continue exploring beyond the device surface (e.g., beyond the
top edge) if fingers can reach it comfortably.

In the second task, we investigated the finger’s maximum range. This is the
range that one can reach with a stretched finger while not changing the initial
grip (i.e., not moving any other finger). We instructed participants to keep the
specified finger fully extended while performing an arc motion (i.e., abduction and
adduction) as far as possible without moving any other finger. Both tasks were
repeated for all five fingers whereas the finger order was randomized. We decided
to not randomize the task order as exploring the comfortable area involves free
(and thus influenceable) movements in contrast to exploring the maximum finger
range. While we gave participants 60 seconds to fully explore the comfortable
area, the maximum finger range was explored for 30 seconds as there are fewer
DoF to explore. The experimenter monitored the markers throughout the study
to ensure that only one finger was moving while all others were not. The study
including optional breaks took 40 minutes on average.

3.2.4 Participants

We recruited 16 participants (7 female) through our university mailing list. Parti-
cipants were between 19 and 30 years old (M = 23.5, SD = 3.5). All participants
were right-handed with hand sizes between 163mm and 219mm (M = 184.1mm,
SD = 17.1) measured from the tip of the middle finger to the wrist crease. Our
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collected data comprise samples from the 5th and 95th percentile of the anthropo-
metric data reported in prior work [191]. Thus, the sample can be considered as
representative. We reimbursed the participants with 10 EUR.

3.2.5 Data Preprocessing

The goal of the preprocessing step is to assign unique identifiers to the markers
and convert them from 3D to 2D space (i.e., front side for thumb markers, rear
side for all others).

Labeling and Cleaning Data

We labeled all markers using semi-automatic labeling provided by OptiTrack’s Mo-
tive:Body software. We used the Fragment/Spike option (Max Spike= 5mm/frame;
Max Gap= 10 frames) which followed the trajectory until a gap or a spike in
marker movement was found. These settings were chosen to prevent marker
swaps in the trajectory. We removed all frames in which the phone’s rigid body
was not tracked due to technical issues. These issues can occur as each of the
four markers of the rigid body need to be captured by at least three cameras
to be reconstructed. We further applied a heuristics to detect erroneous rigid
body tracking by assuming that the phone was not held in uncommon poses (e.g.,
up-side-down, flipped). In total, we removed 2.1% of all recorded frames.

Generating 2D Heatmaps

To transform recorded 3D movements onto 2D planes (front and back side), we
transformed each hand marker from the global coordinate system into the device’s
coordinate system and projected them onto the device surfaces. Movements on
the device surfaces are represented by heatmaps with a raster size of 1mm×1mm.
Due to a fixed duration and capture rate during the tasks, the number of data
points on the heatmaps represents the frequency in which the respective locations
were covered by the finger. We validated the transformation by sampling five
frames per participant which we manually checked for correctness.
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Figure 3.3: (a) Comfortable area of the index finger on an N6. Black contour shows

the area explored by at least 25% of participants; (b) raw recording of the maximum

range task of an index finger on the S4; (c) maximum range after preprocessing and

curve fitting (black curve).

Determining the Comfortable Area

We used the markers placed on the fingertips to determine the comfortable area
for interaction. We first filtered noise in each heatmap by removing all data points
with a sum less than 10 in a 5× 5 neighborhood (i.e., all spots explored less
than 41.6ms at 240 fps). Using dilation and erosion on a binary version of the
heatmap, we then filled little gaps within the comfortable area. Since heatmaps are
now binary, the results for each participant were added up to retrieve a heatmap
representing all explored spots normalized over participants (see Figure 3.3a). To
remove spots that are only reachable to a small number of participants due to an
outstanding hand size or convenient grip, we removed all spots which are not
explored by at least 25% of all participants to exclude outliers.

Determining the Maximum Range

We applied the same noise removal procedure as described above. We then
retrieved the farthest data points into each direction starting from the bottom
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right corner of the device and omitted all other points. This removes accidental
touches or touches with a finger that was not fully stretched (see Figure 3.3b
and Figure 3.3c). Using the farthest points, we fitted a quadratic function to
describe the finger’s maximum range. Bergstrom-Lehtovirta and Oulasvirta [20]
showed that the thumb’s maximum range can be described by quadratic functions
(reported average R2 = .958). We will show that this is also possible for all
other fingers with a high R2. To reproduce their approach, we fitted the same
quadratic function fa,h,k to the filtered data also using non-linear regression and
a least-squares approach. In contrast to their study, our participants were free
to hold the phone in any grip they were used to. As a specific grip could not be
assumed, we had to include the rotation of the phone in the hand into the fitting
process. We therefore introduced a rotation matrix Rα resulting in the function
ga,h,k,α as shown in Equation (3.3):

fa,h,k(x) = a(x+h)2 + k (3.1)

Rα =

(
cos(α) −sin(α)

sin(α) cos(α)

)
(3.2)

ga,h,k,α(x) = Rα ·

(
x

fa,h,k(x)

)
(3.3)

The corresponding error function e which we used to find the parameters a, h, k
and α is:

ea,h,k,α(p) = fa,h,k(rx)− ry with r = R−1
α · p (3.4)

The range of g in which finger movements are restricted in abduction and
adduction movement is then obtained from the minimum and maximum value
in x direction of the filtered data after rotating by Rα . To finally retrieve the
average maximum range of each finger over all participants, we calculated the
mean function over x for all ga,h,k,α(x) of each participant.
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3.2.6 Results

To facilitate the notation, we will use the abbreviations F0 to F4 for the thumb
to the little finger respectively. To report values for each finger at once, we use
square brackets containing the values starting with F0 (e.g., [ F0 F1 F2 F3 F4 ]). We
mapped the origin (0,0) of all figures to the bottom right corner of the smartphone.

Comfortable Area

Figure 3.5 depicts the contour of the comfortable area for all fingers. The color
of the contours denotes the device while dashed lines represent the size of the
respective device.

Area size Table 3.2 shows the size of the comfortable area for each finger on the
four devices. Between the devices, there is a linear growth of the comfortable area
with increasing device sizes for the index and the middle finger. We performed a
Pearson’s correlation test to test for a significant correlation between the device’s
diagonal length and the size of the comfortable area. We found a significant
correlation for the index and the middle finger (r = [−.303 .975 .985 .311 .699 ],
p = [.697 .025 .015 .689 .301 ]). This correlation can be described as a linear
behavior with an average fitness of R2 = [ .09 .95 .97 .10 .49 ].

Area positions The dots in Figure 3.5 represent the area’s centroid position
averaged over all participants. Attached whiskers represent the standard deviation.
The centroids are gradually shifting towards the upper left edge with increasing

S3 S4 OPO N6 Mean SD

Thumb - F0 33.6 41.9 35.2 35.0 36.4 3.3
Index Finger - F1 30.8 37.3 48.9 47.6 41.1 7.5
Middle Finger -F2 24.6 28.5 35.3 36.7 31.3 5.0
Ring Finger - F3 15.8 11.7 18.0 22.0 16.9 3.7
Little Finger -F4 16.9 16.0 20.5 23.7 19.3 3.1

BoD Union (F1 - F4) 79.7 88.6 109.6 106.7 96.2 14.4

Table 3.2: Comfortable areas in cm2 for all fingers on four devices.
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Figure 3.4: Union of comfortable areas of all fingers on the BoD.

sizes of the smartphone. This shift can be described by a linear function with a
fitness of R2 = [.67 .94 .92 .89 .66] for all five fingers. This suggests that the index,
middle and ring finger are linearly shifting towards the left edge with increasing
device sizes. Pearson’s correlation test revealed a correlation between the device’s
diagonal and a gradual shift of the index, ring and little finger towards the top left
corner (r = [ .818 .974 .962 .956 .983 ], p = [ .182 .026 .038 .044 .017 ]).

Union of BoD comfortable areas We show the union of the comfortable areas
for the back side in Figure 3.4. Hereby, they show that 68.8% of the S3 can be
reached without changing the grip or losing stability, while this is the case for
67.3% for the S4, 73.4% for the OPO and 67.7% for the N6.

Maximum Finger Range

The bold quadratic curves in Figure 3.6 describe the maximum range reachable
by each finger averaged over all participants. The dotted curves represent the
standard deviations from the mean curve in bold. Bergstrom-Lehtovirta and
Oulasvirta [20] showed in prior work that the thumb’s maximum range can be
described by quadratic curves (reported average R2 = .958). They tested this by
fitting a quadratic curve into each thumb trajectory made by participants. We
performed the same test for the finger range heatmap for our participants to test
whether the maximum range of other fingers can be described by quadratic curves.
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Figure 3.5: Contours of the comfortable areas averaged over participants for all fingers.

Dots indicate the area’s centroid with whiskers indicating the standard deviation. Black

line visualizes the areas’ shift with angle α towards the upper left corner with increasing

device sizes. Triangles on the right show the average y-position of the respective

finger’s MCP joint and thus describing the grip. Device sizes are indicated by dashed

lines and ticks in mm. Movements of the thumb took place on the front side while all

other movements were on the back side.

66 3 | Hand Ergonomics for Mobile Touch Interaction



(a) Thumb

83 63 50 25 0

159
152
137
121

100

50

0

Front

(b) Index

83 63 50 25 0

159
152
137
121

100

50

0

Back

(c) Middle

83 63 50 25 0

159
152
137
121

100

50

0

Back

(d) Ring

83 63 50 25 0

159
152
137
121

100

50

0

Back

(e) Little

83 63 50 25 0

159
152
137
121

100

50

0

Back S3
S4
OPO
N6

Figure 3.6: These figures show the maximum range for all fingers on four different

devices when fully stretched. Bold quadratic curves represent the mean range, while

the dotted curves show the ranges one standard deviation further from the mean.

Triangles on the right show the average y-position of the respective finger’s MCP joint.

Device sizes are indicated by dashed lines and ticks in mm. Movements of the thumb

took place on the front side while all other movements were on the back side.
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Our test yielded an average fitness of R2 = [ .91 .96 .99 .93 .96 ] indicating that
the maximum range of other fingers can also be described through quadratic
curves.

Effect of Grip and Hand Sizes

We investigated the effect of hand sizes on the common comfortable area by
dividing the data into three balanced sets: Small hands (< 17.5cm), medium
hands (between 17.5cm and 20.0cm), and large hands (> 20.0cm).

The way a user holds the device influences the position of the comfortable area
and the maximum range (see Figure 3.7). For the four device sizes, we observed
the index finger’s metacarpophalangeal joint (MCP) which is the joint between
the finger and the hand bones. The y-position of this joint indicates the position
along the height of the device and thus how high users held the phone, starting
from the bottom edge of the phone. Their y-positions are depicted as triangles in
Figure 3.7. A one-way ANOVA reveals a significant difference in the y-position
of the index finger’s MCP between four different device sizes, F3,271 = 23.518,
p < .001. Bonferroni post hoc tests revealed significant differences between S3
and S4 (p = .002), S3 and OPO (p < .001), S3 and N6 (p < .001), S4 and OPO
(p = .004) as well as S4 and N6 (p < .001).

Figure 3.7a shows the comfortable areas of participants with small hands.
Even within a hand size group, the positions of the comfortable areas can be
different. Thus, we calculated the average variance (a) between the centroids
within groups of hand sizes and (b) between the centroids of all participants as
a measure for the spreadness of the comfortable areas. We tested whether there
is a significant difference between the average variances of these two groups.
A Welch’s t-test revealed that the variance for group a (M = 14.8, SD = 8.1)
was significantly different from group b (M = 16.2, SD = 8.3), t545.82 = 2.055,
p = .040. This shows that the variance between the centroids of the comfortable
area can be decreased by 1.4mm on average when splitted into hand size groups.
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Figure 3.7: For the N6 and the index finger, (a) a set of comfortable areas of participants

with small hands, (b) a set of preprocessed maximum ranges of participants with

medium hands, and (c) raw maximum ranges for all index finger joints of P5 and P15

with different grips (blue: little finger supporting device’s bottom; green: little finger

grasping the edge).

3.2.7 Discussion

To help designing one-handed BoD and edge interaction, we conducted a study to
record finger movements on smartphones using a high-precision motion capture
system. We focused on the area that is reachable without grip changes and losing
grip stability (comfortable area) and the range that is reachable without a grip
change (maximum range) for all five fingers on four different smartphone sizes.

The results show that the upper half of the device is comfortably reachable by
the index and middle finger (see Figure 3.4). This conforms with findings from
previous work [133, 215, 256], and the placement of fingerprint sensors on recent
commercial devices (e.g., Google Pixel). The ring and little finger can reach the
lower left quarter of the device while the lower right quarter is covered by the
palm or parts of the fingers close to the palm (i.e., proximal phalanges). Thus, the
lower left quarter is not reachable by any finger without a grip change. We further
showed that the comfortable areas of the index and middle finger are larger than
the counterparts of the ring and little finger. This indicates that both ring and
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little fingers are less flexible when grasping the device. While the ring finger can
only be moved individually to a lesser extent [76], the little finger is required to
support the grip from the bottom side or stabilizing on the left side.

With increasing device sizes, we found that the comfortable areas of the index
and middle fingers significantly increase. This conforms with the observation of
higher flexibility described above as these fingers can fully explore the increasing
rear surface. We also observed that the hand grip, indicated by the positions of
the metacarpophalangeal joints (MCPs), move towards the top with increasing
device sizes. A possible explanation for this shift is that users try to balance
the device’s vertical center of gravity by moving the grip towards the top with
increasing device height. The shift in hand grip, in turn, affects the centroids of
the comfortable areas that shift towards the top left corner of the device. Similarly,
the shift of the comfortable area towards the left side can be explained by the
balancing of the horizontal center of gravity.

Extending previous work by Bergstrom-Lehtovirta and Oulasvirta [20], we
showed that quadratic functions combined with a rotation also enable to describe
the maximum range of all fingers with an average R2 = .95. This rotation is
necessary as users hold the device in slightly different angles. Conforming the
comfortable areas, the maximum ranges show that the upper left corner is not
reachable without a grip change. With increasing device sizes, the maximum
range moves towards the top left corner similar to the centroids of the comfortable
areas. This is caused by the hand grip’s shift towards the top edge. Still, the gap
between the maximum range and the upper left corner of the device also increases
for larger devices and cannot be reached without a grip change.

We investigated and reported the average maximum range of all fingers and
the comfortable areas that are reachable by at least 25% of all participants (to
exclude outliers). These help smartphone designers to find suitable locations for
additional input controls that can be operated in a single-handed grip by a wide
range of users. We also reported the variance for groups of participants with
different hand sizes and grips. This variance decreases significantly when looking
at different groups of hand sizes separately. Since smartphones are not produced
for specific hand sizes, we presented the variance as an outlook to future work as
an analysis for different groups would go beyond the scope of this thesis.
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3.3 Study II: Investigating Unintended Inputs

We use a quantitative approach to empirically study supportive micro-movements
during common smartphone tasks and scenarios. While participants perform
common smartphone tasks (i.e., reading, writing, and abstract touch gestures)
in typical scenarios (i.e., sitting and walking) on four different smartphones, we
recorded the movement of all fingers with a high-precision motion capture system.

Fingers performing supportive micro-movements or holding the phone touch
certain spots on the back surface which could produce unintended inputs on
BoD inputs controls. In the following, we refer to areas in which supportive
micro-movements (and thus possibly unintended inputs) occur as the grip areas.
We adapted the approach described in the previous section (see Section 3.2) to
first identify the grip areas. Based on the grip areas, we then derive the safe
areas which are the ideal locations to place BoD input controls. Safe areas are
a subset of the comfortable areas which are outside of the grip areas. Thus, the
safe areas represent a subset of the comfortable areas in which no supportive
micro-movements and thus unintended inputs occur. We further use the same set of
devices to investigate the effect of device size on the amount of supportive micro-
movements. This helps to find suitable device sizes especially for single-handed
interaction with fully touch sensitive smartphones.

In addition to the findings of the previous study which help designers to
consider reachability, the findings of the following study help to avoid unintended
inputs.

3.3.1 Study Design

We conducted a study to analyze supportive micro-movements. Thereby, we
focused on the size and position of grip areas, the amount of finger movements
within these areas, and the length of typical trajectories of supportive micro-
movements on differently sized smartphones to inform the design of BoD inputs.
We adapted the apparatus and processing pipeline from our previous study (see
Section 3.2) to find comfortable areas which are not covered by grip areas.
Moreover, we used a NASA-TLX questionnaire [84] and five 7-point Likert scale
questions to assess the perceived workload and usability for each smartphone.
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Figure 3.8: A participant interacting with a smartphone while the hand is being tracked

by a motion capture system.

This data helps understanding the perceived effort caused by the supportive
micro-movements which are required for performing single-handed input with
the thumb from the user’s perspective. We conducted the study in a sitting and
walking scenario as previous work showed significant effects of walking (e.g.
hand oscillations) on smartphone interaction [21, 52, 178].

We used a within-subjects design with SCENARIO and PHONE as the two
independent variables. SCENARIO consists of sitting on a chair to simulate a still
scenario, and walking on a treadmill to simulate a mobile scenario with hand
oscillations but still enable motion tracking. For each SCENARIO, we used four
different smartphones sizes for PHONE. We alternated the order of the SCENARIO

for each participant and counterbalanced PHONE with a Balanced Latin Square.
In each condition, participants performed three tasks which replicate realistic use
cases: reading a text, writing messages, and performing abstract input gestures.
These tasks were balanced through a randomized order.
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Figure 3.9: Placement of the reflective markers (6.4mm spheres) on the right hand for

enabling motion tracking.

3.3.2 Apparatus

We used the same set of smartphones as in the previous study in Section 3.2
which are shown in Figure 3.1 and Table 3.1. These devices were selected due to
a steady increase in device width which influences the grip the most [133, 226].
From small to large, we used a Samsung Galaxy S3 mini (S3), Samsung Galaxy
S4 (S4), OnePlus One (OPO), and a Motorola Nexus 6 (N6).

We used an OptiTrack motion capture system with eight cameras (OptiTrack
Prime 13W, 240 fps) to record finger movements with sub-millimeter accuracy.
The cameras were firmly mounted to an aluminum profile rack as shown in
Figure 3.8. We attached 25 reflective markers (6.4mm spherical markers) on all
joints of the hand as in the previous study (see Section 3.2, and Figure 3.9). In
addition, we attached four markers as a rigid body at the top of each smartphone
for tracking it with six DoF as shown in Figure 3.1. Participants were sitting on a
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chair without an armrest in the sitting SCENARIO and walked on a treadmill in
the walking SCENARIO (see Figure 3.8). Participants walked with 3km/h which is
the preferred walking speed for interaction with mobile devices [21].

We developed a custom application to replicate realistic writing and reading
tasks which also enables us to log all events. Moreover, we used Fitts’ Law tasks
(will be described in detail in Section 4.2.1) to cover common touch gestures and
induce grip shifts. Our application instructs participants to perform different tasks
and logs timestamps for each touch event so that we can synchronize them with
OptiTrack’s motion data. Figure 3.10 shows screenshots of the respective tasks.

3.3.3 Tasks and Procedure

For each PHONE and SCENARIO, participants performed three tasks. In the
writing task, participants transcribed excerpts of MacKenzie’s phrase set [146]
which simulates a text messaging application (see Figure 3.10a). In the reading
task, participants read and scrolled through text passages adapted from an English
learning book [192] (see Figure 3.10b) for two minutes and then answered three
comprehension questions which motivated them to focus on reading. With an
abstract input task, we cover common touch gestures while inducing grip shifts.
The task consists of three gestures: dragging, in which participants dragged a tile
into a target shape with both being randomly placed within a 2×3 grid spanned
across the whole screen (see Figure 3.10c); tapping, in which they tapped on a
target (appeared at a random location) and held it for one second; and scrolling, in
which they scrolled vertical and horizontal bars into a target shape. Each gesture
was repeated 12 times in a randomized order. After each task, participants filled in
a NASA-TLX questionnaire [84] and answered five 7-point Likert scale questions
to assess the perceived workload and usability for each smartphone.

After obtaining informed consent, we collected demographic data and me-
asured the participants’ hand size. We attached the skin adhesive markers on
their right hand to enable motion tracking. We explained the tasks and asked the
participants to perform them on trial to ensure that everything was fully under-
stood. While they held the devices in a single-handed grip, we did not instruct
them to use specific grips as this would influence the generalizability of the study.
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(a) Writing Task (b) Reading Task (c) Abstract Input Task

Figure 3.10: Screenshots of the implemented tasks: (a) shows the writing task, (b)

shows the reading task, and (c) shows the dragging gesture of the abstract input tasks.

Moreover, for the writing task, we instructed them to type as if they would text
friends instead of artificially being as precise as possible. Including briefing,
optional breaks, and attaching markers, the study took around 90 minutes.

3.3.4 Participants

We recruited 16 participants (9 female, 7 male) between the ages of 18 and 27 (M
= 22.9, SD = 2.4). All participants were right-handed. The average hand size was
measured from the wrist crease to the middle fingertip and ranged from 17.5cm to
22.0cm (M = 19.4cm, SD = 1.4cm). Our collected data comprise samples from
the 5th and 95th percentile of the anthropometric data [191]. Thus, the sample
can be considered as representative. Participants were reimbursed with 10 EUR.
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3.3.5 Data Preprocessing

We preprocessed the 3D motion data into 2D heatmaps representing movements
on the front and back side of the devices. We adapted the processing pipeline as
described in the previous section (see Section 3.2.5) to achieve comparability to
the comfortable areas. In short, we applied the following preprocessing steps:

1. Labeling motion data: We labeled markers using semi-automatic labeling
as provided by OptiTrack’s Motive software. To avoid marker swapping,
we used a Max Spike of 4mm/frame and a Max Gap of 5 frames. We did
not use any reconstruction and smoothing approaches to avoid generating
artificial marker positions. In total, we labeled 17,158,404 frames (i.e., 19.9
hours of motion capturing).

2. Transforming global to local coordinate system: We transformed each hand
marker from the global coordinate system into the phone’s coordinate sy-
stem and projected them onto the device surfaces. The pivot point is located
at the top right corner on the front side. We validated the transformation by
sampling five random frames per participant and manually checked them
for correctness. While fingers in common grips (i.e., in which the device’s
rear faces the floor) touch the rear surface to balance and hold the device,
rare cases could occur in which the fingers hover over the device’s rear
such as when holding the phone orthogonal to the floor. In contrast to
rear touchscreens or finger painting, our approach enables to also consider
finger movements which are slightly hovering during the study.

3. Cleaning data: We removed all frames in which the rigid body was not trac-
ked due to occlusion or being out of the tracking grid. To avoid erroneous
rigid body tracking (e.g., marker swaps), we assumed that the phone was
never held in uncommon orientations (e.g., up-side-down, flipped). With
this heuristics, we removed 2.1% of all recorded frames.

4. Generating 2D heat maps and determining grip areas: We generated 2D
heat maps representing the grip areas with a raster size of 1× 1mm by
projecting the markers onto the back and front plane. To remove noise
caused by potential markers swaps, we removed all data points with a sum
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less than 10 in a 5×5 neighborhood (i.e., all spots touched less than 41.6ms
at 240 fps). Using dilation and erosion on a binary version of the heat map,
we then filled small gaps within the grip areas. The union of the binary
heat maps of all participants and tasks finally represent the total grip areas
per finger and device. In contrast to the previous processing pipeline (see
Section 3.2.5), we did not remove outliers (i.e., all spots not touched by at
least 25% of the participants) to cover all areas in which unintended inputs
could occur instead of common grip areas.

5. Determining average activity and trajectory lengths: We represent the
finger activity by their average movement speed in cm/s. Thereby, we cal-
culated the movement speed between each subsequent frame and averaged
them over all three tasks. We represent the average trajectory length in total
travel distance (cm) of a BoD finger while the thumb moves towards the
display and performs an input gesture. To determine start and end of single
input trajectories, we used the timestamps of the abstract input tasks which
are separated with short pauses in between. We removed noise caused by
potential marker occlusions or swaps by filtering the X and Y coordinates
for outliers with a M±3SD filter. The filter removed 0.27% of the data.

3.3.6 Results

We present the grip areas, finger movement activities, lengths of finger trajectories,
and perceived workload and usability for each device. We abbreviate fingers with
F0 to F4 (i.e., thumb to the little finger) and use square brackets to report values
for all fingers [ F0 F1 F2 F3 F4 ] and devices [ S3 S4 OPO N6 ]. We mapped the
origin (0,0) of all figures to the bottom right device corner as participants used
their right hand. While we report the grip areas of the thumb for comparison,
all ANOVAs are conducted without the thumb as a level for FINGER since we
are focusing on unintended BoD inputs. All conducted Tukey post hoc tests are
Bonferroni corrected. We corrected the DoFs using Greenhouse-Geisser in case
the assumption of sphericity had been violated.
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Grip Areas

Figures 3.11 and 3.12 shows the grip areas for all fingers and devices in the sitting
and walking scenario across all three tasks. The colors of the contours represent
the device, and the dashed lines represent the size of the respective device. In the
following, we describe the characteristics of these areas.

Area Size Table 3.3 shows the size of the grip areas for each finger, PHONE,
and SCENARIO in cm2. A Pearson’s correlation test revealed significant cor-
relations between the device’s diagonal length and the size of the grip area
in the sitting SCENARIO for all fingers (r = [ .971 .983 .983 .977 .986 ], p =
[ .029 .017 .017 .022 .014 ]). This correlation can be described as a linear be-
havior with an average fitness of R2 = [ .94 .97 .97 .95 .97 ]. For the walking
SCENARIO, we could not find significant correlations between the device’s diago-
nal length and the size of the grip area for all fingers (r = [ .947 .605 .398 .445
.685 ] , p = [ .053 .395 .602 .555 .315 ]).

A three-way RM-ANOVA revealed significant main effects for FINGER

(F2.60,38.95 = 4.41, p = .012), PHONE (F1.29,19.31 = 6.404, p = .015), and SCE-
NARIO (F1,15 = .7.02, p = .018) on the grip area. We found neither significant

Scenario Finger S3 S4 OPO N6 Mean SD

sitting

Thumb (F0) 46.54 58.76 69.19 86.41 65.22 14.62
Index (F1) 14.43 17.23 23.12 26.82 20.4 4.86
Middle (F2) 12.67 15.1 19.28 22.62 17.42 3.82
Ring (F3) 7.4 13.88 15.96 20.15 14.35 4.6
Little (F4) 12.37 17.76 21.93 27.44 19.88 5.53
∪BoD (F1−4) 40.13 51.06 65.39 74.72 57.83 15.3

walking

Thumb (F0) 50.01 60.92 68.79 88.26 67.0 13.97
Index (F1) 21.48 15.25 20.8 32.94 22.62 6.43
Middle (F2) 20.81 14.27 15.19 30.19 20.11 6.33
Ring (F3) 18.35 12.26 12.62 30.51 18.43 7.38
Little (F4) 21.88 18.05 22.39 41.09 25.85 8.96
∪BoD (F1−4) 61.13 51.48 62.4 101.05 69.02 21.91

Table 3.3: Grip areas in cm2 for all fingers and scenarios on four devices. ∪BoD

represents the union of the grip areas on the rear.
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two-way interactions nor three-way interactions between the factors (p > .05,
each). Tukey post hoc tests revealed significant differences between OPO and N6
(p = .036) and between S4 and N6 (p = .007). A further Tukey post hoc test did
not reveal significant differences between the fingers.

Due to significant main effects of SCENARIO and since we are interested
in differences within the scenarios, we conducted two further two-way RM-
ANOVAs on the sitting and walking subset. For the sitting SCENARIO, we
found significant main effects for PHONE (F3,45 = 9.26, p < .001) but not for
FINGER (F3,45 = 4.41, p= .153) and no two-way interactions between FINGER ×
PHONE (F2.95,44.19 = .616, p < .605). A Tukey post hoc test revealed significant
differences between the S3 and N6, between S4 and N6, and between the OPO and
N6 (p < .001, each) but not for the other combinations (p > .05). For the walking
SCENARIO, we found main effects for FINGER (F1.89,28.30 = 3.83, p = .002),
PHONE (F1.16,17.37 = 3.97, p < .001), and a two-way interaction effect between
FINGER × PHONE (F2.84,42.6 = 2.18, p = .003). A Tukey post hoc test revealed
significant differences between the S3 and N6, between S4 and N6, and between
the OPO and N6 (p < .001, each) but not for the other combinations (p > .05).

Area Position The dots in Figures 3.11 and 3.12 represent the area’s centroid
position averaged over all participants while whiskers represent the standard
deviation.

For the sitting SCENARIO, the shift of the centroids towards the upper side
can be described by a linear function with a fitness of R2 = [ .77 .89 .04 .66 .04 ]
for all five fingers. Pearson’s correlation test revealed no correlation between the
device’s diagonal and a gradual shift of all fingers towards the top left corner
(r = [ .877 −.945 −.187 .811 .194 ], p = [ .123 .055 .813 .189 .806 ]). For
walking this shift can be described by a linear function with a fitness of R2 =
[ .88 .77 .89 .85 .71 ] for all five fingers. Pearson’s correlation test revealed no cor-
relation between the device’s diagonal and a gradual shift of all fingers towards the
top left corner (r = [ .94 −.875 .942 .921 .841 ], p = [ .806 .06 .125 .058 .079 ]).

Safe Areas The dark gray areas in Figure 3.13 represent the total grip area on
the back of the device. The light gray areas represent the total comfortable area
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Figure 3.11: These figures show the grip areas for all fingers on four different devices

(S3, S4, OPO, N6) and in the SITTING scenario. Dots indicate the area’s centroid

with whiskers indicating the standard deviation. Black lines visualize the areas’ shift

with angle α towards the upper left corner with increasing device sizes. Triangles and

lines on the right show the average y-position of the respective finger’s MCP joint and

thus describing the grip. Device sizes are indicated by dashed lines and ticks in mm.

Movements of the thumb took place on the front side while all other movements were

on the back side.
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Figure 3.12: These figures show the grip areas for all fingers on four different devices

(S3, S4, OPO, N6) and in the WALKING scenario. Dots indicate the area’s centroid

with whiskers indicating the standard deviation. Black lines visualize the areas’ shift

with angle α towards the upper left corner with increasing device sizes. Triangles and

lines on the right show the average y-position of the respective finger’s MCP joint and

thus describing the grip. Device sizes are indicated by dashed lines and ticks in mm.

Movements of the thumb took place on the front side while all other movements were

on the back side.
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Figure 3.13: The dark gray areas represent the union of the back fingers’ grip area

(F1 −F4). The areas in light gray show the comfortable areas for the BoD fingers as

shown in Section 3.2.6. We refer to the subsets of the comfortable areas, which are

not covered by the grip area, as the safe areas. The axes denote mm starting from the

bottom right corner.

as reported in Section 3.2.6. With both areas overlapping, the remaining light
gray areas represent the area which is comfortably reachable while no supportive
micro-movements occurred within these areas. We refer to these areas as the safe
areas. The safe areas correspond to [ 60.3 48.4 40.9 35.9 ]% of the comfortable
area during sitting and [ 45.4 48.1 43.4 25.6 ]% during walking.

82 3 | Hand Ergonomics for Mobile Touch Interaction



(a) Sitting

Index (F1) Middle (F2) Ring (F3) Little (F4) Mean
0

2

4

Fi
ng

er
 A

ct
iv

ity
 in

 c
m

/s S3 S4 OPO N6

(b) Walking

Index (F1) Middle (F2) Ring (F3) Little (F4) Mean
0

2

4

Fi
ng

er
 A

ct
iv

ity
 in

 c
m

/s

Figure 3.14: The average finger activity across all tasks in cm/s. Error bars represent

the standard deviations.

Finger Movement Activity

Figure 3.14 depicts the movement activity for all fingers on the back of all
devices. A three-way RM-ANOVA revealed significant main effects for FINGER

(F1.69,25.39 = 136.205, p < .001), PHONE (F3,45 = 46.25, p < .001), SCENARIO

(F1,15 = 412.274, p < .001), as well as for all two-way interactions (p < .001,
each) and three-way interactions (F3.33,49.99 = 9.45, p < .001). Due to significant
main effects in SCENARIO and since we are interested in differences within the
scenarios, we conducted two further two-way RM-ANOVAs on the sitting and
walking subset.

For the sitting SCENARIO, we found significant main effects for FINGER

(F1.69,25.39 = 54.67, p < .001), PHONE (F3,45 = 5.02, p < .001), as well as a two-
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Figure 3.15: Length of finger trajectories in cm across the abstract input task. The

dots (right axis) represent the 95th percentile and its linear growth (mean R2 = .75).

The crosses (right axis) represent the mean length.

way interaction effect between FINGER × PHONE (F3.33,49.99 = 4.14, p < .001).
A Tukey post hoc test did not reveal any significant differences between the
phones. For the walking SCENARIO, we found significant main effects for FINGER

(F1.79,25.90 = 176.35, p < .001), PHONE (F2.13,31.99 = 38.06, p < .001), as well
as a two-way interaction effect between FINGER × PHONE (F2.73,41.02 = 17.09,
p < .001). A Tukey post hoc test revealed significant differences between S3 and
N6, S4 and N6 (p < .05, each), and between S3 and OPO and between S3 and S4
(p < .001, each).

Length of Finger Trajectories during Grip Shifts

Figure 3.15 depicts the 95th percentile for the length of finger trajectories as dots
(left axis) and their means as crosses (right axis). A Pearson’s correlation test
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revealed significant correlations between the device’s diagonal length and the
length of finger trajectories in the sitting SCENARIO (r = [ .957 .988 .969 .974
.997 ] , p = [ .043 .012 .031 .026 .003 ] ) and for walking (r = [ .942 .981 .840 .868
.942 ] , p = [ .058 .019 .160 .132 .058 ]). The correlations can be described as a
linear behavior with an average fitness of R2 = [ .92 .98 .94 .95 .99 ] for sitting
and R2 = [ .89 .96 .71 .75 .89 ] for walking.

Effect of Phone Size on Perceived Effort

To evaluate the perceived workload and usability of each device averaged over all
tasks, we used a raw NASA-TLX questionnaire [84] and five 7-point Likert scale
questions as described in Section 4.2.3.

Perceived Workload Figure 3.16a shows the average perceived workload me-
asured with a raw NASA-TLX questionnaire after each condition. A two-way
ANOVA revealed significant main effects for PHONE (F3,45 = 12.742, p < .001)
on the total workload but neither for SCENARIO (F1,15 = 1.71, p = .21) nor for
the two-way interactions between PHONE × SCENARIO (F3,45 = .429, p = .733).
A Tukey post hoc test revealed significant differences between N6 and OPO,
between N6 and S3, and between N6 and S4 (p < .01, each).

Subjective Perceptions Figure 3.16b and 3.16c show the average perceived
ratings when asked for easiness, speed, success, accuracy, and comfort after using
a specific PHONE.

We conducted five two-way ANOVAs on the ratings on which we applied
the Aligned Rank Transform (ART) procedure using the ARTool [259] to align
and rank the data. For all ratings, the two-way ANOVAs revealed significant
main effects for PHONE (p < .05, each). For the ratings easiness and accuracy,
we found significant main effects for SCENARIO (p < .05, each). For easiness,
we found significant two-way interactions between PHONE and SCENARIO (p =
.032). Five corresponding Tukey post hoc tests revealed significant differences
between S4 and N6 for all ratings (p < .05), between OPO and N6 for easiness,
success, and comfort (p < .05), and between S3 and N6 for easiness and comfort
(p < .05).
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Figure 3.16: Perceived workload (unweighted NASA-TLX) and subjective perceptions

of the usability (7-point Likert scale) for each device averaged over all tasks. The colors

represent the devices, attached whiskers the standard deviation.
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3.3.7 Discussion

Previous work analyzed comfortable areas and presented design implications for
BoD input controls to consider single-handed reachability. With our analysis, we
identified suitable locations for BoD input, ideal device sizes, and further proper-
ties which help to minimize unintended inputs while maintaining reachability. We
first discuss our results and then present three design implications for BoD input.

Safe Areas: Overlaps of Grip and Comfortable Areas

Safe areas are subsets of the comfortable areas in which no supportive micro-
movements were observed. The safe areas cover 46% (43.5cm2) of the comfor-
table areas while sitting and 40% (38.4cm2) while walking on average. The
majority of safe areas are located in the upper right quarter of the device and thus
between the fingertips (when stretched) and the palm. Placing BoD input controls
in these areas enable users to easily reach them by subtly flexing their finger. The
fingertip of a flexed finger (see Figure 3.17a) provides enough force to activate
a physical button (e.g., BoD volume buttons on the LG G-series) and suitable
accuracy for touch-based input controls due to a small contact area. While finger
parts (e.g., the intermediate phalanges) could come in contact with an BoD input
control when stretched (see Figure 3.17b), the finger’s force towards the device
surface is too low (due to the force distribution) to hit the button’s activation point.
Even if users deliberately apply a force towards the back surface with a stretched
finger, the center of pressure is located at the fingertip so that the phalanges cannot
apply enough force to unintentionally hit a flat button’s activation point.

For touch-based input, fingertips can be differentiated from phalanges by
their contact areas. This is feasible with capacitive sensing which previous
work used to identify body parts on commodity devices [99]. For fully touch
sensitive smartphones, we will present a model to accurately translate contact
areas on the device surface to the fingertips’ 3D locations in Section 5.2 which
also automatically omits touches by the phalanges.
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(a) Flexed finger (b) Stretched finger

Figure 3.17: Performing input on a flat BoD button (blue square). The finger is flexed

in (a) which leads to a small contact area. This bundles the force to hit the button’s

activation point (red dot). In (b), the finger is stretched, which leads to a larger contact

area and thus a more distributed force which is not enough to activate the button (light

red area).

Effect of Device Size on Grip Areas and Activities

We found the largest grip areas on the N6 in both sitting and walking scenario.
For the sitting scenario, we further found a significant correlation between the
size of the devices and grip areas. In contrast to the other devices, the unusually
large size of the N6 requires additional supportive micro-movements to maintain
a firm grip. The hand spans of our participants were not large enough to apply a
firm grip (i.e., power grip [175]) to encompasses the whole device width. More
importantly, the 6′′ touchscreen requires an extensive thumb range which can only
be achieved with large grip shifts. Analyzing finger trajectories lengths confirms
that larger grip shifts were indeed performed on larger devices. This conforms
with Eardley et al. [54] who found more device movements on larger phones.

Although the S3 entails a smaller grip area than the N6 as expected, we obser-
ved similar finger activities in a sitting scenario and significantly higher activities
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than on any other device in a walking scenario. The high finger activity on the
S3 is due to a small touchscreen which requires supportive micro-movements for
more input precision. As smaller contact areas lead to a more precise input [97,
98], additional supportive micro-movements were performed to enable the thumb
to touch with a high pitch angle (i.e., nearly perpendicular to the display). Mo-
reover, as the S3 fits well in the hand without a firm grip, users mostly held the
device in a loose grip which provides the thumb with more flexibility.

In contrast, we observed the smallest grip area on the S4 while walking and
on the S3 while sitting. Both the S4 and OPO are between the S3 and N6 in size
and entailed less finger activity than the S3 (while walking) and the N6. Moreover,
they do neither need additional supportive micro-movements for a firm grip nor to
enhance the touch precision.

Effect of Walking on Grip Areas and Activities

We observed larger grip areas and significantly more BoD finger activity for
walking than for sitting. Since walking introduces hand oscillations which previ-
ous work showed to affect mobile input [21, 179], additional supportive micro-
movements are required to compensate the vibrations and avoid dropping the
device. The hand oscillations also explain why there is no correlation between
grip area and device size in a walking scenario as described above. The loose
grip on the S3 provides the thumb with more flexibility, but also leads to more
device movements in the hand caused by oscillations. Moreover, an analysis of
the finger trajectories lengths reveals that the little finger moved significantly
more in the walking condition. As the little finger stabilizes the grip from below,
its movements indicate re-adjustments of the grips hampered by hand oscillations.
These findings suggest that suitable device sizes are required to avoid supportive
micro-movements for input precision and grip shifts. Thereby, we found that the
size of the S4 is favorable for BoD input.

Perceived Usability and Workload

The perceived usability conforms to the observed finger movement activities.
Especially for walking, we found a similar behavior to the finger movement
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activities in which the S4 and OPO are more favorable than other devices. Both
devices received better ratings in easiness, speed, success, accuracy, and comfort
which reflects the lower effort for holding and interacting with the devices. For
the sitting condition, the N6 received the lowest ratings while the other devices
received comparable ratings. This further highlights that the size of an S3 might
be suitable for a sitting scenario but not under the influence of hand oscillations
while users are walking. Results of the raw NASA-TLX revealed significantly
more perceived workload on the N6 than on any other device. Again, we argue
that this is due to its unusual size which even surpasses large versions of recent
flagship smartphones (e.g., iPhone XS Max, Samsung Galaxy S9 Plus).

3.4 General Discussion

In this chapter, we presented two studies to understand the hand ergonomics
for interaction beyond the touchscreen. In particular, the two presented studies
focused on the on-device areas which can be used for interaction, and fingers and
hand parts which could be used for interaction.

3.4.1 Summary

Addressing RQ1, the results of the first study revealed the comfortable area (i.e.,
areas on the device which are reachable without stretching fingers or changing
the grip) and the maximum range (i.e., reachable without a grip change) of all
fingers. Using these measures as a basis, designers can now find suitable on-
device locations for BoD input controls to avoid muscle strain and grip changes
which could lead to dropping the device. The results further revealed that the
index and middle fingers are the most suitable for BoD input due to their flexibility.
In addition, we found that the palm covers the bottom right quadrant of the back
side and parts of the bottom left quadrant (directly opposite). While this means
that placing input controls in these regions should be avoided if possible, the
controlled presence of the palm (e.g., stretching the thumb places the palm on the
display) could potentially be used as an input modality.

Addressing RQ2, the second study extends the results of the first one. We
analyzed the supportive micro-movements, which occur during interaction with
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smartphones due to maintaining a stable grip, limited independence of the fin-
gers [76], and to increase the range of the thumb on the front side. As these could
lead to unintended input on the back side, we introduced the safe areas which
are a subset of the comfortable area. The safe areas are reachable without a
grip change and finger stretching while they entail the least amount of supportive
micro-movements to minimize unintended BoD input.

3.4.2 Design Implications

We present seven design implications in the following which helps designers in
finding suitable locations for BoD input and to design them in a way in which
unintended inputs can be minimized while considering the reachability.

Do not place input controls on the bottom right. The bottom right quadrant
on the back of the device is not reachable for any of the four fingers on the
back without a grip change. When holding a phone, this area is also covered
by the hand’s palm. Hence, no input controls should be placed at the bottom
right corner of the device to avoid grip changes and unintentional input.

Increase reachability by placing input controls within the comfortable area.
Fingers can move freely within the comfortable area without grip changes
or losing grip stability. The majority of the comfortable area is located on
the upper half of the device’s rear and reachable by the index and the middle
finger. To avoid dropping the device and muscle strains, input controls
should be placed so that interaction takes place within the comfortable area.

Avoid unintended inputs by restricting comfortable area to the safe areas.
In addition to the comfortable areas, which avoids grip shifts, safe areas are
a subset of the comfortable areas in which no supportive micro-movements
occurred. These areas are located in the upper right quarter of the device
and can be reached by subtly flexing the index finger, which is also the most
suitable finger for BoD input [130]. To avoid unintended input by other
finger parts (e.g., intermediate phalanges), physical flat buttons should
be used. Touch-based controls can use the contact surface or a contact
translation model [123] to omit touches by other finger parts.
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Place input controls higher on larger devices. We found that both the comfor-
table areas and the average position of the finger’s MCP are shifting towards
the top edge of the device with increasing devices sizes. This indicates
that users are holding the device higher the larger the device is. Thus, we
recommend to place input controls higher for larger devices, including
buttons on the left and right edges.

Use the index finger for complex and frequent BoD input. The index finger
has the largest comfortable area on the back side of all four devices due
to its flexibility. Complex and frequent movements such as BoD gestures
and location-dependent tapping (e.g., fingerprint scanners) benefit from this
flexibility and should be performed with the index finger.

Consider 5′′ devices for single-handed BoD inputs. Large devices (e.g.,
Nexus 6) do not enable firm grips due to their width while small devi-
ces (e.g., Samsung Galaxy S3 mini) require a nearly perpendicular thumb
and thus additional supportive micro-movements for input precision. We
found that 5′′ devices (e.g., Samsung Galaxy S4) were perceived as the most
usable while entailing the lowest amount of supportive micro-movements
for single-handed use while sitting and walking. Thus, we recommend 5′′

devices for BoD inputs.

Expect longer finger trajectories on larger devices. With increasing tou-
chscreen sizes, larger grip shifts are required to provide the thumb with the
required reachability. Thus, users perform a longer trajectory of supportive
micro-movements (e.g., unintended stroke gesture) while shifting the grip.
While the input trajectory length is a common feature to filter unintended
inputs [153, 211], we recommend considering the device size as a factor
when choosing the threshold. Figure 3.15 suggests threshold values in cm
observed during grip shifts.
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4
Hand-and-Finger-Awareness on
Mobile Touchscreens

In the previous chapter, we explored the hand ergonomics to understand which
parts of the hand can be used for interaction in a single-handed grip (e.g., index
and middle finger, and the palm). This corresponds to the first and second step of
the UCDDL. In this chapter, we focus on the steps 3, 4, and 5 of the UCDDL by
implementing and evaluating novel touch-based interaction techniques based on
deep learning.

In particular, we present an approach which applies state-of-the-art deep
learning techniques to identify different sources of touch input based on the
raw data of mass-market capacitive touchscreens. This demonstrates that the
touch input vocabulary on commodity smartphones can already be meaningfully
extended with a high accuracy input method even without any additional sensors.
The research approach and technical pipeline presented in this chapter serve as a
basis for further studies on hand-and-finger-aware touch input on smartphones
which we will present in the subsequent chapters.
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Parts of this chapter are based on the following publication:

H. V. Le, T. Kosch, P. Bader, S. Mayer, and N. Henze. “PalmTouch: Using the Palm as an
Additional Input Modality on Commodity Smartphones.” In: Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems. CHI ’18. New York, NY, USA: ACM,
2018. DOI: 10.1145/3173574.3173934a

H. V. Le, S. Mayer, and N. Henze. “Investigating the Feasibility of Finger Identification
on Capacitive Touchscreens using Deep Learning.” In: 24th International Conference
on Intelligent User Interfaces. IUI ’19. Marina del Ray, CA, USA: ACM, 2019. DOI:
10.1145/3301275.3302295b

aVideo Preview: https://www.youtube.com/watch?v=GFSbboPV7NI
bVideo Preview: https://www.youtube.com/watch?v=jod_-FprYf4

4.1 Identifying the Source of Touch

Based on the findings of Chapter 3 and related work, we present the concept
of two novel and additional input modalities for capacitive touchscreens. This
section includes the context of use and requirements as described in the UCDDL.

4.1.1 The Palm as an Additional Input Modality

Previous work presented a number of alternative input modalities to support
traditional multi-touch input. This includes using the finger’s 3D orientation [156,
198, 202, 265], contact size [24], pressure [91], or the shear force [80]. While
these enrich the information of a finger’s touch, they also bring restrictions since
specific finger postures may now trigger unwanted actions. One solution to lower
the likelihood of triggering unwanted actions is to differentiate between fingers or
parts of fingers, which prevents interference with the main finger for interaction.
Previous work [38, 63, 82] differentiated between different parts of the finger
(e.g., knuckle) or fingers themselves to assign unique touch actions.

We presume that touching the display with the palm can be a natural gesture.
Since the palm can be used in a single-handed as well as in a two-handed grip, we
present an additional input modality that enables people to use the palm to trigger
pre-defined functions instead of simply rejecting palm input as recent smartphones
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do. We refer to this input modality as PalmTouch and show that it is a natural and
fast gesture especially when the device is held one-handed. Stretching the thumb
towards the top edge to access targets that are out of reach often places the palm
on the touchscreen implicitly and subtly as shown in Figure 4.1a. The placement
is often caused by unawareness of users which suggests that this gesture can be
performed naturally. Figure 4.1 shows three examples of using PalmTouch in
one-handed and two-handed scenarios to trigger assigned functions.

Regarding the technical approach, previous work presented different features
to detect a palm on a touchscreen. These include spatiotemporal touch featu-
res [211], and hand model filters [227] to detect the palm in inking scenarios on
tablets. Moreover, Matero and Colley [153] presented characteristic patterns of
unintentional touches, including touch duration which had the largest influence
on rejection performance. However, these approaches require at least two touch
points (pen and palm) or introduce latency due to temporal features which makes
them not suitable for our proposed palm input modality. Recent smartphones
feature a basic palm rejection which omits input in case the contact area is larger
than a usual finger. However, they work on a driver level and are not reliable
enough to be used for interaction.

In this chapter, we present PalmTouch, an additional touch input modality to
trigger pre-defined functions by placing the palm on the touchscreen. Accordingly,
we present four use cases for PalmTouch and evaluate the input modality as a
shortcut and to improve reachability during one-handed smartphone interaction.
To evaluate PalmTouch, we have developed a palm detection model that differenti-
ates between finger touches and palm touches with a high accuracy. In contrast to
previous work, we use the raw capacitive image of the touchscreen to classify the
low-resolution fingerprint using a convolutional neural network. We show that
this runs on off-the-shelf smartphones, also works with single touch points and
introduces no latency opposed to previous work.

PalmTouch Concept and Use Cases

PalmTouch is an additional input modality for a wide range of functions. We
applied the idea of hand part specific touch interaction presented in previous work
(e.g., using different fingers [38, 63] or finger parts [82]) for one-handed as well
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(a) Single-handed (b) Two-handed Surface (c) Two-handed Fist

Figure 4.1: Using the palm as an additional input modality on smartphones. Figure

(a) shows a palm touch when holding the device one-handed, Figure (b) and (c) show

palm touches for two-handed interaction.

as two-handed interaction scenarios. Since using other fingers than the thumb or
other parts of the hand (such as a knuckle) can be inconvenient or even infeasible
during one-handed interaction, we instead use the palm for interaction.

During one-handed interaction, the palm can be placed subtly on the tou-
chscreen by moving the thumb towards the upper edge of the device while
stabilizing the device with fingers on the left edge as shown in Figure 4.1a. Since
we use the palm of the same hand that is holding the smartphone, we refer to this
movement as a same-side palm touch. During two-handed interaction, PalmTouch
can be used by placing the flat hand (see Figure 4.1b) or by forming a fist on the
touchscreen (see Figure 4.1c). Since we use the opposite hand to the one holding
the device, we refer to this movement as an opposite-side palm touch based on
the terminology used by Kerber et al. [111]. In the following, we present four
use cases and discuss further input dimensions that extend the PalmTouch input
modality.
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(a) Reachability Use Case (b) Pie Menu Use Case (c) Copy & Paste Use Case

Figure 4.2: Use cases for PalmTouch. Figure (a) demonstrates how PalmTouch

improves reachability by moving down the screen by half its size; Figure (b) shows the

pie menu for application launching and Figure (c) shows the pie menu for clipboard

management.

Improving Reachability during One-Handed Interaction Large smartphones pose
challenges in reachability since they require changing the hand grip when used
one-handed. With PalmTouch, users can stretch the thumb towards the top as
if they would tap the target. This action implicitly places the palm on the tou-
chscreen and can be used by PalmTouch to shift down the screen by half its size.
A screen shift is exemplarily shown in Figure 4.2a and is similar to the iPhone’s
Reachability feature that can be activated by a double tap on the home button.
Similarly, instead of dragging down the notification bar which poses the same
reachability challenge on large smartphones, PalmTouch can be used to open the
notification drawer. Further difficult to reach UI elements include toolbars (e.g.,
ActionBar1), URL bars in most browsers, search bars, menu buttons, and tabs.

1developer.android.com/design/patterns/actionbar.html
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Custom Actions and Applications Smartphone manufacturers recently integra-
ted simple and binary input modalities such as an extra button (Bixby button
on the Samsung Galaxy S8) or a squeeze on the device’s edge (Edge Sense on
the HTC U11) to launch pre-defined applications. While these features require
additional hardware, PalmTouch can be readily deployed onto recent and older
off-the-shelf smartphones, e.g., through software updates. Moreover, with the
emergence of edge-to-edge displays on devices such as the iPhone X and Samsung
Galaxy S8, the lack of a home button can be compensated with PalmTouch.

Instead of launching a single pre-defined action or application, a pie menu as
shown in Figure 4.2b can be used to provide multiple options. The arrangement of
buttons in a pie menu further benefits one-handed interaction. Previous work [20,
130] showed that the range of the thumb on a touchscreen is parabolic around the
carpometacarpal joint (CMC) of the thumb. The CMC is located in the lower part
of the palm. Since the palm is placed on the touchscreen to launch the pie menu,
the thumb is already in a suitable position to tap the menu items. PalmTouch
can also be used for application-dependent functions. For example, a palm touch
could send away a message in a messaging application, while it accepts a call
in the phone application or switch layers in Maps or CAD application. Since
PalmTouch can be used eyes-free similar to a hardware button or squeeze, actions
such turning off the screen or accepting a call can be mapped to a palm touch.

Clipboard Management Copying and pasting from the clipboard are common
actions in text editing tasks. While computer keyboards provide simple shortcuts,
touch-based operating systems such as Android and iOS handle the access through
context menus or buttons in the toolbar. A context menu requires a long press that
takes between 500ms and 1000ms and could further move the caret to another
location unintentionally due to the fat-finger problem [16]. Toolbar buttons
require additional screen space. Therefore, we propose PalmTouch as a shortcut
to the clipboard menu which avoids long-pressing and altering the caret position.
To paste text, PalmTouch can open a menu which offers the function without a
long-press. For text selection and copy/cut, users can perform a palm touch to
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start text selection and then use the menu as soon as the selection via finger was
done to avoid a long-press. Figure 4.2c shows an example where users can select
between copy, paste and cut after placing the palm on the touchscreen.

Unlocking the Device PalmTouch can be used to unlock the smartphone by pla-
cing the palm on the touchscreen. This action can be done with a same-side palm
touch while holding the device, or with one of the opposite-side variants when
the device is, e.g., lying on a table. In addition to the palm detection, PalmTouch
can be extended to use the biometric features presented in BodyPrint [99] for
authentication based on the capacitive images.

Additional Input Dimensions In addition to a binary action, PalmTouch offers
further dimensions that can be used for interaction. The contact area’s centroid can
be used as a proxy for the palm touch location. This enables the implementation
of directional gestures, such as swiping up with the opposite hand’s palm to exit
an app and swiping left or right to switch between apps. The location of the
opposite hand’s palm can also be used to map functions to different locations of
the touchscreen. For example, a palm touching the top half of the display skips to
the next music title while a touch on the lower half plays the previous title. The
location can also be used for a same-side palm touch (e.g., x-position describes
the used hand) to launch different actions depending on the hand that performed
the palm touch.

4.1.2 Investigating the Feasiblity of Finger Identification

In addition to PalmTouch as an accurate input technique based on deep learning
and the raw capacitive data, we investigate the feasibility of finger identification
based on the same pipeline. A large body of work has already explored techniques
to enable finger-aware touch interaction. By executing similar actions, but with
different fingers, users can enter different commands similar to the use of multiple
buttons on a computer mouse or modifier keys on keyboards. These techni-
ques enable promising use cases, such as improving text entry on small touch
displays [75], providing finger-aware shortcuts on touch keyboards [284], and
enhancing multitasking on smartphones [74]. As a result, a number of hardware

4.1 | Identifying the Source of Touch 99



prototypes that enable finger-aware interaction were presented. This includes
sensors attached to the fingers [74, 75, 152], gloves [149], electromyography [19],
and cameras attached to the device (e.g., RGB [245, 284], depth sensor [172,
252]). While these approaches are accurate, they require sensors to be attached to
the user or the device which reduces mobility. There is no standalone solution yet
that identifies fingers on a commodity smartphone.

One solution to avoid additional sensors for finger identification is to use
the contact geometry of touches. Previous research focused predominantly on
tabletops that provide high-resolution images of touches [8, 56, 62] to identify
fingers based on multi-touch hand models. By modifying the firmware of smartp-
hones, researchers used the raw data of commodity touchscreens (referred to as
capacitive image) to infer further input dimensions. Capacitive images represent
low-resolution fingerprints and can be used to estimate the finger orientation [156,
265], recognize body parts [99], palm touches [136], and hand poses [171]. Gil et
al. [63] used capacitive images of a smartwatch prototype to differentiate between
touches of thumb, index and middle finger. However, they used exaggerated poses
on smartwatches so that each finger touched with a distinct angle. Expecting
these poses does not only impact the usability but they are also not common and
ergonomic for smartphone use (e.g., touching with half the middle finger).

Previous work showed that capacitive images provided by mobile devices do
not contain sufficient signal to identify each finger during regular interaction [63].
However, being able to differentiate between the primary input fingers (e.g., right
thumb) and others is already a useful addition to the input vocabulary. For exam-
ple, a second finger could perform shortcuts, secondary actions, and even improve
multitasking [74] or text entry [75]. Prior work required wearable sensors [74, 75,
152], sequential data such as gestures [144], pre-defined targets [29], or temporal
features [275] to differentiate between a set of fingers (e.g., left/right thumb).
In contrast, we use capacitive images to identify fingers within single frames
independent from context, position, and additional sensors. We collected a data
set comprising of capacitive images for each finger and empirically studied finger
combinations which can be differentiated with a usable accuracy. While a feature
engineering approach with basic machine learning achieved inferior results, we
present a user/position-independent deep learning model to differentiate between
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left and right thumbs with over 92% accuracy. We evaluated it with novel use
cases that users find intuitive and useful. Moreover, we publicly release our data
set and models to enable future work using and improving finger identification on
commodity smartphones.

4.2 Input Technique I: Palm as an Additional Input

Modality (PalmTouch)

This section describes the development and evaluation of the PalmTouch inte-
raction technique following the steps 3 to 5 of the UCDDL.

4.2.1 Data Collection Study

To implement the use cases based on a palm recognition, the touchscreen needs
to differentiate between finger and palm touches. Previous work used the 2D
touch location provided by the touchscreen which is either limited through la-
tency [153, 211] or requires at least two touch points (pen and palm) [211, 227].
In contrast, we use capacitive images provided by the touchscreen which contain
low-resolution fingerprints of the touch (e.g., finger or palm). Since we apply
machine learning to classify the touch, we conducted a user study to collect labe-
led touch data of fingers and the palm while participants perform representative
touch actions. With this data, we train and evaluate a palm detection model to
differentiate between touches from fingers and palms.

Study Design & Tasks

The purpose of this study is to collect a wide variety of finger and palm touch
input. We designed six different tasks which instruct each participant to perform a
total number of 240 representative touch actions. The first five tasks in Figure 4.3
(finger tasks) require participants to use their fingers whereas the rightmost task
(palm task) instructs participants to place their palm on the screen (see Figure 4.1).
The order of the finger tasks was randomized, and a palm task was performed
after each finger task in an alternating order. Each finger task was performed 15
times.
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(a) Tap (b) Drag (c) Scroll (d) Rotate (e) Palm

Figure 4.3: All six tasks performed by participants in the data collection study.

Participants performed these tasks in two conditions, ONE-HANDED with
the thumb as the main input finger and TWO-HANDED with the index finger as
the main input finger. We conducted these tasks to capture different finger and
palm touches in our data set. In both conditions, participants had to perform
tapping, dragging, and scrolling movements. The TWO-HANDED condition also
cover zooming and pinching movements. After each task, participants placed their
palm on the touchscreen until they were told to remove it by the apparatus. We
counterbalanced the variant of the opposite-side palm touch between participants
(flat hand and forming a fist). We instructed participants to place their palm as if
that would activate an function, such as launching the application drawer.

Participants & Study Procedure

We recruited 22 participants (5 female) between the ages of 21 and 34 (M =
25.1, SD = 3.2). All participants were right-handed. The average hand size was
measured from the wrist crease to the middle fingertip, and ranged from 17.0cm
to 21.9cm (M = 19.2cm, SD = 1.6cm). Our collected data comprise samples
from the 5th and 95th percentile of the anthropometric data reported in prior work
[191]. Thus, the sample can be considered as representative.

After participants signed the consent form, we measured their hand size. We
then explained the procedure including the palm input modality as shown in
Figure 4.1 and handed them an instruction sheet which explains all tasks of the
study. We asked participants to repeatedly try out the movements until they felt
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(a) Finger (b) Palm (one-handed) (c) Palm (two-handed)

Figure 4.4: Exemplary raw capacitive images from the data collection study. Figure

(a) shows the finger of participant 5 during the dragging task; (b) shows the palm of

participant 19 in the one-handed condition and (c) shows the palm of participant 9 in

the two-handed condition.

comfortable to repeat a palm touch at any given moment. Participants performed
all tasks in 20 minutes on average and were rewarded with sweets for their
participation.

Apparatus

We used an LG Nexus 5 running Android 5.1.1 with a modified kernel to access
the 15×27 raw capacitive image of the Synaptics ClearPad 3350 touch sensor
(see Figure 4.4). Each image pixel corresponds to a 4.1mm×4.1mm square on
the 4.95′′ touchscreen. The pixel values represent the differences in electrical
capacitance (in pF) between the baseline measurement and the current measure-
ment. We developed an application for the tasks described above which logs a
capacitive image every 50ms (20 fps). Each image is logged with the respective
task name so that every touch is automatically labeled.
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4.2.2 Model Development

Based on the collected data set, we train a model to classify touches as being
made by a finger or a palm. We will first show simple approaches based on feature
engineering and established machine learning algorithms known from previous
HCI work. Afterwards, we show that representation learning techniques such as
neural networks (NNs) and convolutional neural networks (CNNs) outperform
the simpler approaches regarding the classification accuracy. Models and test
results are summarized in Table 4.1.

Data Set & Preprocessing

After filtering empty (due to not touching) and erroneous images (which do not
contain the expected number of touches) to avoid wrong labeling, we have a data
set comprising 138,223 capacitive images which represent blobs of valid touches.
We extended the data set with flipped versions (vertical, horizontal, and both) of
all remaining capacitive images to train the model for different device orientations.
To train a position-invariant model and enable classification of multiple blobs
within one capacitive image, we performed a blob detection, cropped the results
and pasted each blob into an empty 15×27 matrix (referred to as blob image).
The blob detection omitted all blobs that were not larger than one pixel of the
image (4.1mm× 4.1mm) as these can be considered as noise of the capacitive
touchscreen. In total, our data set consists of 552,892 blob images. We trained
and tested all models with a participant-wise split of 80% to 20% (18:4) to avoid
samples of the same participant being in both training and test set.

Feature Exploration and Basic Machine Learning

Due to their prominence in previous HCI work (e.g., [82, 220, 274]), we trained
and evaluated palm touch models based on Support Vector Machines (SVMs),
k-nearest neighbors (kNNs), Decision Trees (DTs) and Random Forests (RFs).
In contrast to representation learning approaches [17], these algorithms require
the training data to be processed into features (i.e., feature engineering). Using
scikit-learn 0.18.21, we trained different models and performed a grid search as

1scikit-learn.org/0.18/documentation.html
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proposed by Hsu et al. [101] to determine the most suitable hyperparameters. If
we did not report a hyperparameter, we applied the standard value as reported
in scikit-learn’s documentation. Since the palm’s average contact area on the
touchscreen (M = 932.06mm2, SD = 503.17mm2) is larger than the finger’s
(M = 164.86mm2, SD = 50.77mm2), we first used the blob area as a single feature
to classify the touch. We determined the blob area by fitting an ellipse around
the blob1. With an accuracy of 96.80% (prec = 97.66%; rec = 92.05%), the DT
(with max_depth = 4 to avoid overfitting) achieved the highest accuracy of the
aforementioned algorithms. After experimenting with a wide range of additional
features including the ellipse parameters and the capacitance represented by the
blob, we found that a feature set comprising the ellipse (area, width and height)
and the capacitance (mean and sum) achieved the highest accuracy of 98.17%
(prec = 96.10%, rec = 98.18%) using an RF.

Representation learning algorithms learn features in part with the labeled input
data and have been shown to be more successful than manual feature engineering
for image data [17]. Thus, we implemented a multilayer feedforward neural
network using TensorFlow2 and performed a grid search over different network
configurations, including the number of neurons in steps of 50, layers in steps
of 1, activation functions, and optimizers provided by TensorFlow. Our final
network architecture is shown in Table 4.1. Training was done with a batch size
of 100 using the Adaptive Gradient Algorithm (AdaGrad) [51] with an adaptive
learning rate starting from 0.001. We initialized the network weights using the
Xavier initialization scheme [65]. While we experimented with L2 Regularization
and batch normalization [103], this did not improve the overall accuracy. We
achieved an accuracy of 98.74% (prec = 97.49%, rec = 98.46%) with this network
configuration.

PalmTouch using a Convolutional Neural Network

CNNs are the recent state-of-the-art method for image classification [115]. As
blobs are represented by low-resolution images, we implemented a CNNs using

12D least squares estimator for ellipses: scikit-image.org/docs/dev/api/skimage.
measure.html#skimage.measure.EllipseModel

2www.tensorflow.org/
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features algorithm parameters / layers prec rec acc

− Baseline
(ZeroR)

Always predicting Finger as this is the
majority class.

- 0.0 68.54

finger blob kNN k (neighbors) = 197 97.90 91.78 96.80
size DT max depth = 4 97.66 92.05 96.80

RF estimators = 1; max depth = 1 97.64 92.06 96.80
SVM C = .1; linear kernel 98.99 90.54 96.73

ellipse & kNN k (neighbors) = 9 98.40 94.34 97.73
capacitance DT max depth = 6 97.10 96.70 98.05

RF estimators = 16; max depth = 10 96.10 98.18 98.17
SVM C = 10; linear kernel 99.96 79.06 93.40

raw data NN Input: 405 97.49 98.46 98.74
(RL) Hidden Layer 1: 500 (ReLU)

Hidden Layer 2: 300 (ReLU)
Softmax (output): 2

CNN Input: 27×15×1 99.38 99.28 99.58
Convolution: 7×7×16 (ReLU)
Max Pooling: 2×2 (stride = 2)
Convolution: 7×7×36 (ReLU)
Max Pooling: 2×2 (stride = 2)
FC Layer 1: 350 (ReLU)
FC Layer 2: 350 (ReLU)
Softmax (output): 2

Table 4.1: Performance of the trained models with the hyperparameters after a grid

search for the highest accuracy. Results (in percent) were calculated using the test set

described above.

TensorFlow. We performed a grid search over the number of layers, filters and
their sizes in steps of 1, the number of neurons in the fully connected layer in steps
of 50, as well as activation functions and optimizers provided by TensorFlow.
Our final network architecture is shown in Table 4.1. We trained the CNN
using AdaGrad as the optimizer with a batch size of 100 and used the Xavier
initialization scheme to initialize the network weights. We initialized the biases
with random values from a normal distribution. An exponential decay (rate = 0.2
in 1000 steps) was used to decrease the initial learning rate of 0.009. We used
L2 Regularization to compensate overfitting by adding 0.01 of the weights to
the cost function. Moreover, we used an early stopping approach as proposed
by Caruana et al. [31] to further avoid overfitting. While we experimented with
batch normalization [103], this did not improve the overall accuracy. Our CNN
achieved an accuracy of 99.58% (prec = 99.38%, rec = 99.28%) which is the
highest of all presented approaches.
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Mobile Implementation

After freezing the CNN to a protocol buffer file, we used TensorFlow Mobile1

for Android to run the CNN on an LG Nexus 5 that provides the same capacitive
images as in the data collection study. Classifying one capacitive image including
the blob detection takes 7.5ms on average (min = 4ms, max = 11ms, SD = 1.6ms)
over 1000 runs. As this is faster than the sampling rate for the capacitive images,
it can be used to classify each sample when running in the background. With
processor manufacturers recently starting to optimize their processors for machine
learning (e.g., Snapdragon 835), the classification can be sped up significantly2.
The model can be further optimized for mobile devices with techniques such as
quantization [78] and pruning [7] for a small loss of accuracy.

Discussion

We presented an overview of machine learning algorithms which we used to
train a palm classifier and showed that a CNN achieved the highest classification
accuracy of 99.58%. This improves the baseline accuracy by 31.0%. While
our grid search already yields reasonable results for the basic machine learning
approaches, further optimizing accuracy and especially precision is necessary as
the palm classifier is supposed to run in the background to classify a large number
of input frames over time (i.e., 20 frames per second). As fingers are used most
of the time to perform input on the touchscreen while a detected palm triggers
a defined action, false positives (affecting the precision score) lead to a visible
unexpected behavior. In contrast, a lower recall score (and thus a higher false
negative rate) could be partly compensated by the UI through, e.g., recovering
previous wrongly classified palm touches as soon as the palm is correctly detected.
Thus, we prioritized precision over recall in the training process. While the SVM
with ellipse and capacitance properties as features achieved the highest precision
of all approaches, the trade-off is by far the lowest recall and also accuracy. In

1www.tensorflow.org/mobile/
2www.qualcomm.com/news/onq/2017/01/09/

tensorflow-machine-learning-now-optimized-snapdragon-835-and-hexagon-682-dsp
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total, the CNN achieved the best results while the preparation and classification
are feasible to perform on an off-the-shelf mobile device. We will refer to this
model as CNN-PalmTouch.

4.2.3 Evaluation

We conducted a study to evaluate PalmTouch and the model accuracy in realistic
scenarios. Specifically, we focus on the following three aspects: 1) classification
accuracy of CNN-PalmTouch in realistic scenarios, 2) qualitative feedback after
using PalmTouch, and 3) a quantitative evaluation of the reachability use case. We
used a Nexus 5 running the mobile version of CNN-PalmTouch described above
and custom applications to record and implement the study scenarios.

Study Procedure & Design

We designed four tasks to evaluate the three aspects described above. We mea-
sured the participants’ hand and finger sizes after we obtained informed consent
and then handed them an instruction sheet that explained all parts of the study so
that participants could refer to the instructions at any time.

Part 1 (Realistic Scenario for Evaluating False Positives) In a counterbalanced
order, we instructed participants to perform tasks one-handed and two-handed
which we refer to as realistic scenarios. While participants used the smartphones,
we collected the classifier output in the background to test the model on false
positives as palms are not expected in this part. We designed the realistic scena-
rios to cover commonly used touch input gestures including tapping, dragging,
scrolling, and additionally pinching and rotating for two-handed use. To keep
the scenarios as realistic as possible, participants performed this part on a pure
Android system using common applications such as the onboard SMS messenger,
Google Chrome, and Maps.

We handed the Nexus 5 in standby mode to the participant who received a
(simulated) notification after unlocking the device. Tapping the message in the
notification drawer then opens a text message with questions that the participant
needs to answer by using Google searches or Maps. We further provided an
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instruction sheet that describes each step that the participant is required to do.
The gestures described above were used especially using the system (tapping and
scrolling), selecting text on a website (long press and dragging), and navigating
in Google Maps in the two-handed scenario (pinching and rotating). Each of the
two scenarios ended with replying to the initial SMS message with the search
results. In total, this part took 10 minutes per participant.

Part 2 (Realistic Scenario for Qualitative Feedback) We introduced and demon-
strated PalmTouch to the participants and let them practice the same-side and
one of the opposite-side palm touches using a demo application. Afterwards,
participants performed a modified version of the Part 1 scenarios. Instead of
pulling down the notification bar, participants now use the palm to access the
notifications. Further, we replaced all application switching actions with the
pie menu containing the messaging, browser and maps application. After com-
pletion, participants filled out a questionnaire and we interviewed them about
their impression of PalmTouch. In total, this part took around 15 minutes per
participant.

Part 3 (Reachability Task) We evaluated the reachability use case regarding the
task completion time (TCT) and qualitative feedback. Specifically, we compared
accessing notifications supported by PalmTouch with dragging down the notifica-
tion bar manually. We used a 2×2 within-subjects design with the independent
variables being the number of hands (ONE-HANDED and TWO-HANDED) and the
access method (PALM and DRAG). Each condition comprised 20 repetitions of
opening the notification drawer to click on a notification displayed at a random
height. Between these repetitions, participants completed 2 - 5 Fitts’ Law tasks
as shown in Figure 4.5b to ensure that they returned to their usual hand grip
after clicking the notification. We measured the TCT for opening the notification
drawer and clicking on the notification. We further collected qualitative feed-
back about the perceived easiness, speed, success, accuracy, and comfort using a
7-point Likert scale.

The apparatus simulates a notification bar (see Figure 4.5a) for the respective
conditions. To simulate the DRAG condition as realistic as possible, the notifica-
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(a) Notification Bar Task (b) Fitts’ Law Task (c) Palm Touch Prompt

Figure 4.5: Screenshots of (a) the notification drawer in Part 3; (b) Fitts’ Law task as a

distraction task in Part 3; and (c) a prompt to place the palm on the touchscreen until

the progressbar on top is full (Part 4).

tion drawer can also be opened with a fling downwards. By rooting the Nexus 5,
we disabled Android’s notification bar and navigation bar to avoid any disruptions
during this part. This part took 10 minutes.

Part 4 (Palm Touch Input for Evaluating False Negatives) We tested the model
on false negatives. Our study application instructed participants to repeatedly
place their palm on the screen for one second and remove it afterward (see
Figure 4.5c). The duration ensures that participants contribute a similar number
of samples and avoids palm touches being done too quickly or slowly. Both
same-side and opposite-side palm touches were performed 20 times each in a
counterbalanced order. We collected the classifier output during this part to test
the model on false negatives as fingers are not expected in this part. We let
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participants perform this part at the end of the study since repeatedly placing the
palm on the touchscreen and waiting could lead to fatigue and therefore influence
the other parts. This part took 5 minutes.

Participants

We recruited 22 participants (6 female) with an average age of 21.9 (SD = 2.1)
who had not participated in the previous study. All except two participants were
right-handed. The average hand size measured from the wrist crease to the middle
fingertip ranged from 17.2cm to 20.5cm (M = 18.6cm, SD = 0.9cm). Three
participants preferred to use their smartphone two-handed, while 14 preferred to
use it one-handed and five use both variants in everyday life.

Results

We present the results of the evaluation study which covers model accuracy,
evaluation of the reachability use case, heatmaps of how PalmTouch was used,
and qualitative feedback.

Model Accuracy in Realistic Scenarios We obtained labeled capacitive images
of touch input in a realistic scenario. With the labels providing us with the
number of false positives and true negatives (Task 1), and true positives and false
negatives (Task 4), we derived the precision, recall, and accuracy of the classifiers.
After calculating all three metrics for each participant, the mean accuracy yielded
by CNN-PalmTouch is 99.53% (SD = 0.71%). The mean precision is 99.35%
(SD = 2.53%) and the mean recall is 97.94% (SD = 2.87%). The false positive
rate which describes the likelihood of unintentionally triggering a palm input is
0.09%.

Reachability Use Case Evaluation For the ONE-HANDED condition, the average
time for DRAG to open the notification drawer is 1689.62ms (SD = 700.32ms)
while the total time including tapping the notification is 2352.74ms on average
(SD = 817.14ms). In contrast, the average time for PALM to open the notifica-
tion drawer is 1396.31ms (SD = 449.75ms) and 2114.73ms (SD = 647.14ms)
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including tapping the notification. A two-tailed paired t-Test revealed a signifi-
cant difference in TCT to open the notification drawer in the PALM and DRAG

condition (t329 = 6.71, p < .001) and in TCT including tapping the notification
(t329 = 4.40, p < .001). We used a Wilcoxon signed-rank test to analyze the
Likert scores as shown in Table 4.2 for the ONE-HANDED condition and found a
statistically significant difference between PALM and DRAG in perceived easiness
(Z = −2.201, p = .028), speed (Z = −1.985, p = .047), success (Z = −2.069, p =
.039) and accuracy (Z = −2.087, p = .037). No statistically significant difference
was found for the perceived comfort (Z = −.508, p = .612).

For the TWO-HANDED condition, the average time for DRAG to open the
notification drawer is 1462.54ms (SD = 873.14ms) while the total time including
tapping the notification is 2103.94ms on average (SD = 1049.05ms). In contrast,
the average time for PALM to open the notification drawer is 1394.29ms (SD =
588.76ms) and 2110.40ms (SD = 742.37ms) including tapping the notification.
A two-tailed paired t-Test showed neither a significant difference in TCT between
the PALM and DRAG condition to open the notification drawer (t329 = 1.19, p
= .236) nor in the TCT including tapping the notification (t329 = −0.09, p =

.925). We used a Wilcoxon signed-rank test to analyze the Likert scores for the
TWO-HANDED condition and did not find a statistically significant difference
between PALM and DRAG neither in perceived easiness (Z = −.626, p = .531),
speed (Z = −.019, p = .985), success (Z = −1.562, p = .118), accuracy (Z =
−.894, p = .371), nor comfort (Z = −1.326, p = .185).

Type and Location of Palm Placement Figure 4.6 shows heatmaps of the loca-
tions at which participants performed palm touches in task 4, and indicate the
touches’ average position. All three images represent the average capacitive
images over each participant. We separated the capacitive images into three palm
input types that we showed in Figure 4.1: same-side (as shown in Figure 4.1a),
opposite-side using the flat hand (Figure 4.1b), and opposite-side by forming a
fist (Figure 4.1c). Nine participants decided to use the flat hand for opposite-side
palm touch and 13 participants the fist.
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(a) Same-Side PalmTouch (b) Opposite-Side (Flat) (c) Opposite-Side (Fist)

Figure 4.6: Average capacitive images representing the location of the palm touches

for (a) same-side, (b) opposite-side using the flat hand, and (c) opposite-side by forming

a fist. All images describe the average capacitive images over each participant.

Qualitative Feedback in Realistic Scenarios Participants filled out a SUS ques-
tionnaire [28] about PalmTouch as an additional input modality in the two realistic
scenarios. SUS scores range between 0 to 100 whereas any score above 68 is
considered to be above average in terms of usability [27]. The SUS score for
PalmTouch ranged from 52.5 to 95.5 with an average of 80.1 (SD = 10.0). With
this, the average score lies between “good” and “excellent” in the adjective rating
of Bangor et al. [14]. Realistic scenarios without PalmTouch yielded an SUS
score of M = 74.0 (SD = 16.1).

When asked about the first impression after using PalmTouch in realistic
scenarios, the majority (18) were positive about using the palm as an additional
input modality. Especially when used one-handed, participants found using the
palm intuitive and natural (P7, P10, P11, P12, P13, P14, P20), comfortable (P3,
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One-Handed Two-Handed

Perception Palm Drag Palm Drag

Easiness ∗ 5.7 (1.1) 4.8 (1.6) 6.0 (1.2) 5.6 (1.7)
Speed ∗ 5.6 (1.2) 4.6 (1.8) 5.4 (1.6) 5.2 (1.8)
Success ∗ 6.0 (1.4) 5.1 (1.6) 6.2 (1.0) 5.5 (1.6)
Accuracy ∗ 5.7 (0.9) 5.0 (1.4) 5.9 (1.0) 5.4 (1.6)
Comfort 4.5 (1.6) 4.5 (1.9) 6.1 (1.0) 5.4 (1.5)

Table 4.2: Subjective perceptions (7-point Likert scale) to open the notification drawer in

both conditions. Values in brackets indicate the SD, an asterisk (∗) indicate a statistically

significant difference between one-handed PALM and DRAG (p < .05).

P6, P9) and convenient (P2, P3, P13). While participants needed a short period of
time to get familiar with the input modality, they (P12, P13, P15, P21) appreciate
that it helps them to use the system faster than before (“It felt strange for a short
while, but then I became familiar with it really fast. After that, it feels intuitive,
and I am faster than without it. ” - P21). Moreover, they were surprised about
the stability of the system (“I was surprised that the system worked really well,
especially for app switching.” - P13; “It worked well” - P9). In contrast, four
participants reportedly had concerns to perform a palm touch (“I was afraid to
drop the phone” - P22) or “had the feeling that [they] touch something on the
screen unintentionally” when used the first time (P17).

When asked about advantages of PalmTouch, eight participants reportedly
find the provided shortcuts useful. They identified that these shortcuts provide
faster access to apps (P9, P11, P12, P17, P18, P19) and improve reachability,
especially when using the device one-handed (P7, P10, P20). As an example
for the faster access, P16 explained that the most important apps are “always
available when placing the palm onto the touchscreen”. Further, P7 suggested
that “systems could use palm input to [allow users to] access the app drawer from
every screen” to make launching apps faster. Three participants (P7, P10, P20)
argued that PalmTouch saves grip changes as “shortcuts help to reach buttons on
the top side of the touchscreen” (P20).

We asked participants about perceived disadvantages of PalmTouch. For
PalmTouch in the one-handed condition, only two participants (P3, P7) reported
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that when “tapping something on the upper left edge of the device, one could
accidentally place the palm on the screen” (P3) which could be solved with
the reachability use case. In general, participants see more advantages than
disadvantages for PalmTouch when they use the device one-handed. In contrast,
they reported more disadvantages after the two-handed scenarios. Holding the
device with one hand and placing the palm of the second hand on the touchscreen
feels unintuitive (P2, P12, P16) and unnatural (P5, P6, P7, P11). As an example,
P12 explained that “switching from index finger to the palm requires either moving
the hand or turning it” which makes it inconvenient. Further, three participants
(P3, P20, P22) argued that it is faster to use the index finger of the second hand
to reach targets on the top side of the touchscreen instead of the palm. Since
two-handed interaction does not pose reachability challenges, participants found
that PalmTouch was less useful in the two-handed scenarios.

We asked participants for further scenarios in which PalmTouch can be useful.
They preferred and suggested the possibility to start custom applications and
actions (P2, P3, P6, P11, P14, P15, P17, P18), such as the camera (P2, P6),
settings within an application (P11, P17) or splitting the screen (P18) which is
shipped with Android 7.0. P1 and P22 even suggested mapping more critical
functions since they find it unlikely to trigger a function mapped to the palm
accidentally. These functions include closing the foreground application (P1),
accepting a call (P20), or stopping the music (P22).

Discussion

We implemented PalmTouch and deployed it on an off-the-shelf smartphone to
enable users to trigger specific functions by placing the palm on the touchscreen.
The palm as an additional input modality received a SUS score of 80.1 which is
considered above average in terms of usability [27]. The SUS score conforms with
subjective feedback of participants who found PalmTouch intuitive and natural as
a way to improve reachability and as a shortcut. Using the notification bar as an
abstract scenario of the reachability problem, we found that participants perceive
PalmTouch as significantly easier, faster and more accurate than changing the grip
which could lead to dropping the device. For the one-handed scenarios, an analysis
of the task completion time (TCT) revealed that PalmTouch is indeed significantly
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faster than a grip change to open the notification drawer manually. This finding
can be transferred to other interface elements such as toolbars, the application’s
menu button, and URL bars in most browsers. Further, with the emergence of
edge-to-edge displays on devices such as the iPhone X and Samsung Galaxy S8,
the lack of a dedicated home button can be compensated with PalmTouch.

Participants gave more positive feedback for PalmTouch during the one-
handed scenario. The reason is that two-handed interaction does not pose any
reachability challenges since the interacting hand can move freely over the whole
display. Moreover, placing the other hand’s palm on the display feels reportedly
less subtle and thus can feel unusual. In both scenarios, all except two participants
had no difficulties to place their palms on the touchscreen after a short practice
phase. Due to small hand sizes (17cm), two participants lack a stable grip while
holding the device one-handed. Moreover, bending the thenar muscles1 to place
the palm on the touchscreen causes the hand to bend. Thus, all other fingers move
towards the palm which leads to an unstable grip while the device is tilted. In this
situation, a controllable input is not possible since the device needs to be balanced.
However, this also applies to stretching the thumb or changing the grip. Thus,
we recommend PalmTouch as an additional input modality while still providing
alternative touch input in case the user cannot ensure a stable hand grip.

We implemented PalmTouch using capacitive images of the touchscreen and
trained a CNN which achieves a high accuracy in detecting the palm. Compared
to basic machine learning approaches and neural networks, the CNN achieved
the highest accuracy with an applicable classification time when deployed on an
off-the-shelf LG Nexus 5. We showed that our model classifies touches reliably
during realistic scenarios with an accuracy of 99.53%. With a precision of
99.35%, the likelihood of unintended triggers either through classification errors
or unwanted palm input is neglectable. With a recall of 97.94%, our classifier
also recognized the palm reliably when users placed them on the screen. False
negatives were caused by capacitive images in which the palm was about to be
placed on the screen (in Task 4), and can be corrected by recovering previous
wrongly classified palm touches as soon as the palm is correctly detected. The
accuracy can be further improved by taking the average locations of palm input

1Thenar muscles refers to a group of muscles located at the base of the thumb [107].
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Figure 4.7: Identifying left and right thumbs on a commodity smartphone using the raw

capacitive data of touches.

as shown in Figure 4.6 into account. Since accuracies in offline validation and
realistic scenarios are similar, this shows that our model is generalizing well and
does not overfit. In summary, this shows that using the palm to activate functions
is feasible with a high accuracy while perceived as natural and fast by users.

4.3 Input Technique II: Finger Identification

This section describes the development and evaluation of finger identification
models following the steps 3 to 5 of the UCDDL.

4.3.1 Data Collection Study

We conducted a user study to collect labeled touch data while participants per-
formed representative touch actions. This data enables us to train and evaluate
models based on supervised learning for distinguishing between different fin-
gers. We adopted the study design which we presented in Section 4.2 which also
described tasks that cover typical touch gestures such as tapping, scrolling, and
dragging to include representative actions.
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(a) Tapping task (b) Dragging task (c) Scrolling task

Figure 4.8: Tasks adapted from Section 4.2.1 to cover typical touch inputs.

Study Design & Tasks

To record representative touch input, we instructed participants to perform three
different tasks with each of the ten fingers. The tasks are shown in Figure 4.8
and include a tapping task in which participants tapped and held the target for
1.5 seconds to generate sufficient data; a scrolling task in which a red line needs
to match a blue line (horizontal and vertical); and a dragging task in which
participants dragged a tile into a target. The targets and shapes appeared at
randomized positions.

We used a 10×3 within-subjects design with the independent variables being
the fingers and the tasks. With each finger, participants performed 30 repetitions
of all three tasks resulting in 10×30×3 = 900 tasks per participant. We further

118 4 | Hand-and-Finger-Awareness on Mobile Touchscreens



Figure 4.9: The study apparatus showing a participant solving a scrolling task with the

index finger.

divided the 30 repetitions of the scrolling task into 15 vertical and 15 horizontal
tasks to cover all scrolling directions. The order of fingers was balanced using a
Latin square while the tasks appeared in a shuffled order.

Participants & Study Procedure

We recruited 20 participants (15 male and 5 female) with an average age of 22.4
(SD = 2.8). All except two were right-handed. The average hand size measured
from the wrist crease to the middle fingertip ranged from 16.3cm to 20.8cm (M =
18.9cm, SD = 1.3cm). Our data includes samples from the 5th and 95th percentile
of the anthropometric data [191]. Thus, the participants can be considered as
representative.

After obtaining informed consent, we measured the participants’ hand size
and handed them an instruction sheet which explained all three tasks. Participants
were seated on a chair without armrests and instructed to hold the device one-
handed when touching with the thumb, and two-handed for all other fingers. We
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Figure 4.10: The average capacitance and blob size for each finger.

instructed participants to hold the device in the same angle for all fingers (i.e.
the angle they used first) to avoid the models potentially overfitting to the angle
between device and fingers (e.g., participants shifting their grip or changing their
body posture after a condition). On average, participants finished all tasks within
45 minutes including optional breaks. We reimbursed participants with 5 EUR
for their participation.

Apparatus

We used an LG Nexus 5 with a modified kernel as described in Section 4.2 to
access the 15×27 8-bit capacitive image of the Synaptics ClearPad 3350 touch
sensor. Exemplary images of the raw capacitive data are shown in Figures 4.4
and 4.7, where each image pixel corresponds to a 4.1mm×4.1mm square on the
4.95′′ touchscreen. The pixel values represent the differences in electrical capaci-
tance (in pF) between the baseline measurement and the current measurement.
We developed an application for the tasks described above which logs a capacitive
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image every 50ms (20 fps). Images were logged with the respective task name
and finger so that each touch was automatically labeled. Figure 4.9 shows the
study apparatus.

4.3.2 Model Development

We present the gathered data set and describe three steps towards developing
finger identification models: (1) cleaning the data set, (2) exploring the data set
to understand distinctive features between touches of individual fingers, and (3)
using deep learning to train models for finger identification.

Data Set & Preprocessing

We collected 921,538 capacitive images in the data collection study. We filtered
empty images in which no touches were performed, as well as erroneous images
in which more than one finger was touching the screen to avoid wrong labels.
To train a position-invariant model and enable classification of multiple blobs
within one capacitive image, we performed a blob detection, cropped the results
and pasted each blob into an empty 15×27 matrix (referred to as blob image).
The blob detection omitted all blobs that were not larger than one pixel of the
image (4.1mm× 4.1mm) as these can be considered as noise of the capacitive
touchscreen. In total, our data set consists of 455,709 blob images (194,571
while tapping; 111,758 while dragging; 149,380 while scrolling).

Feature Exploration

We visually inspected the generated touch blobs of each finger during all tasks
to find distinctive features. Figure 4.11 shows average touch blobs for each
finger including the blob size and distribution of the measured capacitance. We
generated these images by upscaling the capacitive images by a factor of 5 using
the Lanczos4 algorithm [233] to increase clarity of the capacitance distribution.
We then cropped the blobs and overlayed them for each finger. To describe
the blobs, we fitted an ellipse around them using a 2D least squares estimator
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Figure 4.11: Average capacitive image for touches of each finger upscaled by a factor

of 5 (for clarity purposes). Fitted ellipses represent the average area of touches in mm
and the orientation θ thereof in degrees. The bars represent the standard deviation of

the minor-axis a and major-axis b.

for ellipses1. The resulting ellipse parameters (minor-axis a, major-axis b, and
orientation θ ) in mm are averaged and shown in Table 4.3. We further explored
the ellipse areas (A = π ∗a∗b) and the average measured capacitance of a blob.
We determined the average capacitance by averaging all electrode measurements
of a blob larger than 0. Figure 4.10 shows the average capacitance (8-bit) and
average blob size (in mm).

Similar to previous work [63, 265], we used all five features (i.e., mean
capacitance, the ellipse area, a, b, and θ ) to explore whether basic machine
learning models based on feature engineering are sufficient for finger identification.
For the sake of clarity, we focused on random forests over which we performed
a grid search to find the best hyperparameters for each combination of fingers.
Results are reported in Table 4.4 (see RF column) and are inferior to deep learning
algorithms.

1scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.
EllipseModel
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a b θ

Hand Finger Count M SD M SD M SD

Thumb 50,897 7.32 1.27 7.48 1.47 43.05 49.77
Index 41,379 6.51 0.74 6.28 0.82 46.62 52.72

Left Middle 39,079 6.64 0.84 6.38 0.91 46.09 52.03
Ring 44,718 6.55 0.86 6.32 0.93 43.31 53.03
Little 45,794 6.21 1.00 6.39 1.24 33.57 53.06

Thumb 44,674 7.07 1.28 7.15 1.27 43.37 52.72
Index 46,507 6.60 0.91 6.45 1.06 46.04 52.76

Right Middle 47,082 6.73 0.95 6.55 1.10 51.86 49.33
Ring 47,229 6.71 0.88 6.47 0.96 47.55 49.07
Little 48,350 6.33 1.04 6.31 1.19 38.80 50.02

Table 4.3: Parameters of all fitted ellipses. Parameters a and b represent the length

of minor and major semi-axes (in mm). θ represents the ellipse rotation in a counter-

clockwise orientation in degrees.

Finger Identification using Convolutional Neural Networks

Deep learning algorithms such as CNNs learn features in part with the labeled
input data and have been shown to be more successful than manual feature
engineering [17]. Thus, we implemented CNNs using Keras (based on the
TensorFlow backend) and performed a grid search as proposed by Hsu et al. [101]
to determine the model parameters that achieve the highest test accuracy for
all models as shown in Table 4.4. If we do not report a hyperparameter in the
following, we applied the standard value (e.g., optimizer settings) as reported in
Keras’ documentation. We started our grid search based on a CNN architecture
which previous work found to perform the best on capacitive images [123, 136].
We performed our grid search as follows: We experimented with the number of
convolution and dense layers in steps of 1. For the convolution part of the CNN,
we varied the kernel size in steps of 1× 1 and number of filters in steps of 16.
For the dense layers, we experimented with the number of neurons in steps of 32.
Moreover, we adapted the dropout factor in steps of 0.1. Figure 4.12 shows the
final network architecture which achieved the highest test accuracy.

We trained the CNNs using an RMSprop optimizer [229] (similar to Ada-
Grad [51] but with a less radical approach to decrease the learning rate) with
a batch size of 100. Further, we used the Xavier initialization scheme [65] to
initialize the network weights. We used L2 regularization with a factor of 0.05, a
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Figure 4.12: General architecture used after performing an initial grid search for all

finger combinations listed in Table 4.4.

0.5 dropout after each pooling layer and the dense layer, and Batch Normalization
to prevent overfitting during training. Our model expects a 15×27 blob image as
input and returns the probability of each class (i.e. finger) as output.

Model Accuracies

Table 4.4 shows the models that we trained and their accuracies on a test set. We
trained and tested all models with a participant-wise split of 80% to 20% (16:4)
to avoid samples of the same participant being in both training and test set.

The THUMB L/R and INDEX L/R models differentiate between touches of the
respective finger from the left hand and the right hand. While the INDEX L/R

model achieved an accuracy of 65.23%, the THUMB L/R model discriminates left
and right thumbs with an accuracy of 90.12%. Differentiating between thumb
and index finger independent from the hand (THUMB/INDEX) is feasible with an
accuracy of 84.01%. Similarly, identifying whether a touch was performed by
the thumb or any other finger (THUMB/OTHERS) yields an accuracy of 86.44%.

Identifying touches from the left or the right hand (HAND L/R) is feasible
with an accuracy of 59.23%. We further explored the differentiation between
three fingers (i.e. thumb, index, and middle finger) similar to previous work by
Gil et al. [63]. With our TRITAP model, we improved their accuracy by 2.92%
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Full Tap Muser SDuser Minuser Maxuser ZeroR RF #

THUMB L/R 90.12 93.14 88.61 7.18 72.17 97.30 52.97 66.20 2
INDEX L/R 65.23 64.31 88.63 7.39 67.37 99.87 51.21 54.34 2
THUMB/INDEX 84.01 81.81 89.11 5.77 74.95 98.04 54.04 73.59 2
THUMB/OTHERS 86.44 88.89 84.52 12.62 48.37 95.55 78.92 79.91 2
HAND L/R 59.27 62.18 63.34 15.99 37.83 89.70 50.90 50.54 2
TRITAP 67.17 70.92 82.12 6.63 68.67 95.44 31.73 56.54 3

5 FINGERS 46.13 47.15 64.35 7.86 48.87 79.07 21.08 32.14 5
10 FINGERS 35.55 37.86 67.95 7.44 58.67 83.91 11.60 17.93 10

Table 4.4: Accuracies for differentiating between finger combinations. The first two

columns show the accuracy on the test set based on a participant-wise 80%:20% (16:4)

split. The third to sixth columns show user-based accuracies averaged over participants

with a 80%:20% split (sorted by timestamp). ZeroR represents the baseline accuracy

(using most frequent label) and RF represents the accuracy of random forests and

feature engineering. # represents the number of classes for the respective model.

which results in 70.92%. Increasing the number of fingers to identify decreases
the accuracy. A hand-independent finger identification (5 FINGERS) leads to
an accuracy of 46.13% while additionally differentiating between hands (10
FINGERS) yields an accuracy of 35.55%.

In addition, we trained models using a subset of the data set consisting of
touches of the tapping task (Tap Data). Similar to Gil et al. [63], we achieved
improvements in accuracy of up to 3.75% compared to the full data set. Moreover,
we trained models for each participant (user-based models) using their full datasets
with a 80%:20% split sorted by timestamps. This increased the average accuracy
by up to 32.4% while reaching maximum accuracies of 80% to 99% per user.
The improvements are substantial for 10 FINGERS, 5 FINGERS, TRITAP and
INDEX L/R but not for models such as THUMB L/R with an already high accuracy.
Out of all models, the THUMB L/R and THUMB/OTHERS achieved the highest
accuracy.

Mobile Implementation

After freezing and exporting the trained model into a protocol buffer file, we
used TensorFlow Mobile for Android to run the CNN on an LG Nexus 5. A
classification including blob detection and cropping takes 19.2ms on average
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(min = 12ms, max = 25ms, SD = 4.2ms) over 1000 runs. As this is faster than the
20 fps sampling rate for the capacitive images, the inference can be performed on
each sample in the background. Since recent processors (e.g., Snapdragon 845)
are optimized for machine learning, the classification time can be reduced to a
neglectable duration1. The model can be further optimized for mobile devices
with techniques such as quantization [78] and pruning [7] for a small loss of
accuracy.

Discussion

We started the model development by exploring the data set and training random
forests based on features derived from the capacitive images. The results did not
reveal any distinctive features which basic machine learning algorithms could use
for finger identification. Thus, we applied CNNs to develop models to differentiate
between combinations of fingers. The achieved accuracies are shown in Table 4.4.

As expected, the model for identifying 10 FINGERS leads to an accuracy of
35.55%, which is not practical for interaction. Confirming previous work by
Gil et al. [63], this indicates that the information provided by the low-resolution
capacitive images does not reveal enough differences between the fingers. To
improve upon this, we then combined the same fingers of both hands into one
class (5 FINGERS model) to achieve a higher accuracy (46.13%). However, when
considering the improvement factor over the baseline as suggested by Kostakos
and Musolesi [113], we found that this factor decreases when combining fingers
of both hands (2.1 for 10 FINGERS, 1.2 for 5 FINGERS). Similarly, combining all
fingers of a hand into one class (HAND L/R) leads to an accuracy of 59.27% but
with an even lower improvement factor of 0.2. Moreover, discriminating thumbs
from other fingers (THUMB/OTHERS) resulted in an improvement factor of 0.1.
This further suggests that combining touches from multiple fingers into one class
leads to more overlaps between classes and a decrease of accuracy improvements
over the baseline. These results suggest that involving multiple fingers and classes
in the classification leads to accuracies that are not sufficient for interaction.

To improve the accuracy, we explored models to differentiate between the
two fingers mainly used for input: THUMB L/R, INDEX L/R, and THUMB/INDEX.

1www.qualcomm.com/snapdragon/artificial-intelligence
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While INDEX L/R and THUMB/INDEX achieved accuracies of 65.23% and 84.01%
respectively, THUMB L/R achieved the highest accuracy of all models (90.12%).
The high accuracy of the THUMB L/R model could be due to different reasons.
We observed that the thumb does not touch the display in a nearly perpendicular
angle as other fingers do. This results in a larger contact surface which provides
more information for classification. Amongst others, this includes the thumb’s
yaw angle (angle between thumb and vertical axis of the touchscreen) which
is different for touches of the left and the right thumb (see yellow hotspots in
Figure 4.11). While this works for the CNN, the pure orientation of the blob is
not enough to use for basic ML algorithms due to the high standard deviation.

In an interaction scenario, fingers should be identified directly after touching
the display. Since the first touch is always a tap, we trained models using only
the tap data. We achieved accuracy improvements of up to 3% (e.g., 93.14% for
THUMB L/R) as moving fingers add additional noise, especially at a lower frame
rate. We further explored user-based models as collecting touches for on-device
training works similar to the setup of fingerprint scanners. While THUMB L/R

did not improve, the 10 FINGERS model improved by over 32%. The accuracy
increase for user-based models could be explained by individual postures (e.g.
orientation) of each finger which resulted in differentiable touch shapes. Our
models can be applied to other devices by retraining or scaling the raw data.

In summary, we found that reducing the number of fingers to identify increases
the overall accuracy. While identifying all 10 fingers is not sufficiently accurate
on capacitive touchscreens of commodity smartphones, differentiating between
the left and right thumb is feasible with an accuracy of over 92%. This extends
the touch input vocabulary as the second thumb can be used for secondary actions,
similar to the right mouse button. Moreover, previous work showed that using
both thumbs is already a common posture for most users [52, 54, 129, 187]. In
addition to an offline validation, we demonstrate the usefulness of our THUMB

L/R model, suitable use cases, and the model’s accuracy during real use cases on
a commodity smartphone in the following.
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4.3.3 Evaluation

We conducted a study to validate the model’s accuracy and to evaluate our sample
applications with users. We focused on the following two aspects: 1) model
validation with new participants and thus a dataset that was not involved in
training and test, and 2) collecting qualitative feedback on the sample use cases
and the concept of thumb-aware interaction.

Study Procedure and Design

We designed three tasks to evaluate the two aspects described above. After we
obtained informed consent from participants, we measured their hand sizes and
collected demographic data. We handed them an instruction sheet that explained
all parts of the study so they could refer to the instructions at any time.

Part 1 (Model Validation) In this part, we collect the validation set to evaluate
the model performance with data from different participants than the ones used to
train and test the model. We used the same tasks as in the data collection study
(see Figure 4.8) and instructed participants to perform dragging, tapping, and
scrolling tasks in a randomized order. All tasks were performed with the left and
the right thumb in a counterbalanced order so that we could collect ground truth
labels for the validation of the THUMB L/R model. Additionally, participants filled
in a raw NASA-TLX questionnaire [72, 84] to compare the perceived workload
with results from part 2.

Part 2 (Abstract Porous Interface) In addition to the first part, we evaluate the
effective accuracy which includes the model’s classification accuracy and human
errors. The human error describes the user’s error-proneness to use the correct
fingers to solve the tasks. To do so, we used the porous interface application to
instruct participants to solve dragging and scrolling tasks with different thumbs.
To collect ground truth labels for accuracy evaluation, new targets appear as soon
as the previous target was filled (e.g., in Figure 4.13b a new target for dragging
appeared after the scrolling target was filled). Thus, the current task (e.g., dragging
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(a) Dragging (b) Porous UI (c) Painting

Figure 4.13: Screenshots of (a) a dragging task in part 1; (b) a combined dragging and

scrolling task as an abstract porous interface in part 2; (c) the drawing application in

part 3 with a pie menu for color selection.

in Figure 4.13b) can be used as the ground truth label. We asked participants to
fill in a NASA-TLX questionnaire to assess the perceived workload for using the
correct thumb to solve the task.

Part 3 (Painting Application) To evaluate the THUMB L/R model in a concrete
scenario, we used the painting application shown in Figure 4.13c in which users
can draw using the right thumb and use the left thumb for secondary tools (e.g.,
erasing or selecting colors using a pie menu). Similar to the previous part,
the upper left corner displays which thumb was recognized and thus which
action the user is performing. We use this part to collect qualitative feedback
from participants on the concept of thumb-aware interaction on a commodity
smartphone. The qualitative feedback includes a questionnaire for ratings, and an
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interview focused on the advantages and disadvantages of the interaction method.
Further, we asked for use cases that participants envisioned for thumb-aware
interaction on smartphones.

Participants

We recruited 10 participants (6 male, 4 females) with an average age of 24.1
(SD = 3.0) who had not participated in the previous study. All participants were
right-handed. The average hand size measured from the wrist crease to the
middle fingertip ranged from 17.3cm to 21.0cm (M = 18.5cm, SD = 1.1cm). We
reimbursed participants with 5 EUR for their participation.

Results

We present the evaluation results which covers a model validation, the effective
(model and human) accuracy in an abstract use case, and qualitative feedback on
thumb-aware interaction.

Model Validation Based on the collected capacitive images of new participants,
the THUMB L/R model (trained with full data) achieved a mean accuracy of
89.78% (SD = 3.30%, min = 84.90%, max = 96.50%). The mean precision
for detecting the left thumb was 88.72% (SD = 4.43%, min = 82.31%, max
= 95.68%) and the recall was 89.85% (SD = 3.90%, min = 82.12%, max =
95.87%). Pearson’s correlation test did not reveal a significant correlation bet-
ween the hand size and accuracy (r = −0.03, p = 0.94).

A validation of the THUMB L/R model (trained with tap data) with the tap data
subset resulted in a mean accuracy of 91.98% (SD = 5.24%, min = 81.98%, max
= 99.23%). The mean precision for detecting the left thumb was 90.80% (SD =
4.40%, min = 85.29%, max = 98.84%) and the recall was 91.77% (SD = 7.81%,
min = 77.15%, max = 99.48%). Again, Pearson’s correlation test did not reveal
a significant correlation between hand size and accuracy (r = −0.04, p = 0.92).

Effective Accuracy in Porous Interfaces Based on the performed task as ground
truth (i.e., scroll or drag), the following results represent the effective accuracy
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when considering both model and human errors. Human errors occured when
participants mistake, e.g., the left for the right thumb for the scroll task. Therefore,
these results describe the accuracy that one can expect when also considering the
error-proneness of users to use the correct thumb for the tasks.

When classifying touches using the THUMB L/R model (trained with full data),
the effective accuracy was 85.16% (SD = 3.50%, min = 78.16%, max = 91.36%)
with a precision of 86.77% (SD = 3.60%, min = 81.19%, max = 92.34%) and
recall of 84.17% (SD = 4.74%, min = 74.03%, max = 89.96%) for detecting
the left thumb. Pearson’s correlation test did not reveal a significant correlation
between the participant’s hand size and classification accuracy (r = −0.46, p =
0.18).

Subjective Feedback We present the subjective feedback on the use cases. For
the interviews, two researchers employed a simplified version of qualitative coding
with affinity diagramming [79] by coding the answers, printing them on paper
cards, and finally clustering the answers.

Perceived Workload Ratings: We used a raw NASA-TLX questionnaire [72]
to assess participants’ perceived workload after using the abstract porous
interface. Moreover, we assessed the perceived workload after part 1 as a
comparison. Mauchly’s Test of Sphericity indicated that the assumption
of sphericity had not been violated, χ2(2) = .745, p = .689. A one-way
ANOVA with repeated-measures does not reveal any statistically significant
differences (F2,18 = 2.711, p = .093) between the perceived cognitive load
when using the left hand (M = 13.3, SD = 9.2), right hand (M = 7.3, SD =
7.3), or both hands for the abstract porous interface task (M = 11.2, SD =
6.1).

Interview: When asked about the first impression after using thumb-aware
interaction, the majority (8) provided positive feedback. In particular,
participants found it useful in general (“very useful” - P7), for painting
applications (“it is faster, especially since one can switch color with the
left hand” - P1), for multitasking purposes (“very useful, especially to use
two apps simultaneously” - P5), and to avoid unintended touches (“one
can not activate something unintentionally” - P4). They commended the
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idea (“cool and innovative idea” - P10) especially for the abstract porous
interface task (“the first task is easier to solve with two thumbs” - P5) and
the painting task (“makes painting easier, even quite good when holding
the device slightly different” - P1). Moreover, they (6) found the interaction
method intuitive (“more intuitive [than without]” - P7) and easy to learn (“I
am already used to using both thumbs. This makes learning this interaction
method easier.” - P6).

Confirming the perceived workload ratings, participants found that they
had no difficulties to coordinate the thumbs for the two layers of the porous
interface (“I had no cognitive difficulties” - P2, “Needed to get used to in the
beginning, but then it became easy” - P4). Only one participant (P3) men-
tioned that it might be “confusing to focus on two things simultaneously”.
While two participants were impressed by the finger identification accuracy
(“Recognition was already very good - there were only two cases in which
my finger was wrongly identified.” - P5), other (6) participants clearly
noticed it when fingers were wrongly identified (“little bit frustrating since
false recognitions leads to [unintended lines] that needs to be erased” - P7).
However, in the porous interface task, such identification errors could be
“easily fixed by touching the display once again” (P5). Further, P5 noted
that he “quickly learned how to [place] the thumbs to control [the user
interface]”.

When asked about use cases which they envision for thumb-aware inte-
raction, all participants were unanimous about multitasking and shortcuts as
the main use case. Moreover, they suggested using the interaction method
for mobile games and image editing. For example, applications could offer
multiple modes that make use of the porous interface concept (P9, P10) to
avoid manual switches. Further, thumb-aware interaction could be used to
interact with 3D objects so that each finger manipulated one dimension (P2,
P5, P9). This would also benefit mobile games so that each finger could
be assigned to one joystick or button so that fixed positions for control
elements would not be required (P1, P4, P6). When asked about which
fingers participants would use if all 10 fingers could be recognized with a
sufficient accuracy, participants were unanimous that the thumb is the main
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finger for interacting with smartphones. Further, 4 participants considered
the index finger for interaction while 2 would additionally consider the
middle finger. To interact with tablets on a table, all participants would
use all fingers while one participant further suggested using knuckles. In
general, nine participants would use the concept of thumb-aware interaction
on their devices (“definitely, if apps support it” - P4) while one would not.

Discussion

We conducted a user study to validate the accuracy of the THUMB L/R model
with participants who had not participated in the data collection study. Further,
we combined the model validation with an evaluation of two use cases that we
implemented using thumb-aware touch interaction. This includes an abstract
scenario of porous interfaces initially proposed by Gupta et al. [74], and a painting
application in which the right thumb can draw while the left thumb is responsible
for the settings (e.g., color and tool selection).

Model Validation Accuracy and Qualitative Feedback The model validation re-
sulted in accuracies similar to the results achieved in the offline validation with the
test set. This suggests that the THUMB L/R model generalizes well across different
users and does not overfit. We also considered human errors (i.e., mixing up
between fingers) together with the model accuracy which resulted in an effective
accuracy of 85.16%. The 5% difference in contrast to the model validation could
be due to a number of reasons. Human errors are inevitable especially since users
are not yet fully familiar with this interaction concept. This conforms with the
statements in the interview. Further, there are technical limitations that affect
the accuracy of this live scenario. Due to the low retrieval rate of the capacitive
images (20 fps), the classification could have happened on images in which the
thumb was still in motion so that it just barely touched the display. While one
solution could be using multiple frames and taking the most predicted class, this
would have introduced latency.

Despite a decrease of 5% accuracy in a live scenario, participants were po-
sitive about the use cases for thumb-aware interaction and argued that wrong
classifications could be fixed effortlessly by placing the finger on the display
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again. One participant even mentioned that he learned how to place the thumb
on the screen to avoid wrong classifications after the first iterations. The quali-
tative feedback revealed that participants were unanimously positive about the
interaction method and that it can be a useful addition to the touch input vo-
cabulary. Moreover, the ratings showed that interacting with porous interfaces
using thumb-aware interaction does not increase the perceived workload. This
suggests that interacting with two applications simultaneously can be intuitive for
users and further avoids repeatedly switching between applications or splitting
the screen which decreases the interaction space. Shortcuts (e.g., pie menu for
color selection) were perceived as intuitive and can save screen space that is used
for menu bars otherwise. However, wrong identifications are reportedly more
noticeable in this use case.

Improving the Classification Performance While the thumb models (i.e., THUMB

L/R, THUMB/INDEX, and THUMB/OTHERS) achieved accuracies well beyond the
80% that previous work considered sufficient in general [113], sufficiency also de-
pends on the action’s consequence (e.g., easily recoverable action vs. permanent
action) and how classifications are translated to actions. While the consequence
depends on the application/developer, we discuss translation approaches and
improvements that can further minimize accidental activations to a neglectable
amount in the following.

Instead of translating a single classification result into an action, previous work
showed that taking the majority class of a set of results noticeably improves the
accuracy (i.e., majority voting [120]). Since multiple results are considered, single
incorrect results (e.g., due to outliers) can be compensated. This is especially
useful for recoverable actions and scenarios that provide enough time to gather
multiple classifications (e.g., finger identification while performing a gesture).
Further, a threshold for the confidence score [147] of the most likely class could
be used to avoid incorrect translations due to similarities. In case of a low
confidence score, a touch could be either omitted with a warning to the user, or a
fallback function could be activated that can easily be recovered. Especially with
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recoverable functions in case of a wrong identification, the system can collect
touch data in the background to continuously improve the finger identification
model using on-device learning.

Our approach is solely based on capacitive images to investigate the feasibility
of identifying fingers within a single frame and independent from context and
position. Finger identification, in general, could be improved with additional con-
text information from the touchscreen or additional sensors. The touch position
provides more information about the finger’s yaw angle for thumb identification
since distant touches (e.g., close to top edge) lead to larger contact surfaces due
to a stretched thumb. Similarly, touch offsets on smaller targets (e.g., right thumb
tends to hit the right of the target and vice versa for the left thumb) represent an
additional feature to predict hand postures [29]. Further, gestures (e.g., unlock
trajectories) could be used to detect the handedness of users [144] and combined
with the majority voting approach described above. Sequential models (e.g., recur-
rent neural networks (RNN) and long short-term memory (LSTM)) can be trained
with sequences of capacitive images (i.e., trajectories of touches) to consider the
information that gestures provide for detecting handedness.

Besides software-based approaches, touchscreens with a higher sensing re-
solution could be used. The Samsung SUR40 display offers touch images in a
higher resolution based on IR sensing which contain more signal to improve the
classification accuracy. However, such touchscreens need yet to be produced and
incorporated into mass-market mobile devices. Not only are they more complex
to manufacture but would also need more resources to be operated. Further im-
provements includes pre-touch sensing [93] to sense the finger above the display
or built-in inertial measurement units [66, 89, 213].

4.4 General Discussion

In this chapter, we presented two novel touch-based interaction techniques for
capacitive touchscreens as incorporated in commodity smartphones. We followed
the UCDDL as presented in Section 1.2.3 to develop and evaluate the interaction
techniques in three steps: (i) a data collection study to gather ground truth data for
the model, (ii) the modeling phase in which we explore the data set and features,
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as well as train a deep learning model, and (iii) an evaluation in which we validate
the model accuracy and evaluate the interaction technique in a real scenario based
on our implementation.

4.4.1 Summary

Addressing RQ3, we presented a deep learning based approach and showed that
hand parts (e.g., palm) and fingers (e.g., left and right thumb) can be differentiated
with a high and usable accuracy. For the data collection study, we designed
tasks to gather a representative data set on which we train the recognition model.
In contrast to a typical evaluation in the field of deep learning which uses a
validation set for the final model evaluation, our approach is more HCI-oriented
which consists not only of a validation with a new set of participants but also an
evaluation of the model and interaction method in a real use scenario. This also
enables us to evaluate the usability (e.g., noise of estimations over time for none
to small variations) of the model which is not evaluated by simply determining
the accuracy. In summary, we showed that our approach enables to differentiate
between the main input finger (e.g., right thumb) and an additional hand part
or finger with a high and usable accuracy. Despite this success, the signal of
individual touches on a capacitive touchscreen is not sufficient to enable the
identification of all fingers.

A solution to the limited signal is to involve more information about the
hand itself into the model inference. This would assume that the full hand is
touching the device which is the case in a single-handed grip. Since the degrees of
freedom of a human hand is limited, a model could use the constraints of the hand
movements to infer the position of the other hand parts. However, this would
require a smartphone which senses capacitive touch input on the whole device
surface and provides the capacitive images for inference.

4.4.2 Lessons Learned

Based on the developed recognition models and results of the evaluation study,
we derive the following insights:
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Simple touch source identification improves the input vocabulary. An eva-
luation of our novel interaction techniques using binary classifiers based
on deep learning and the raw capacitive data revealed that they extend
the touch input vocabulary in a meaningful way. Differentiating between
touches of palm and finger enable additional shortcuts to frequently used
functions, and improve reachability especially during single-handed input.
Moreover, differentiating between left and right thumbs improve multi-
tasking, add an additional input modality (comparable with left and right
mouse buttons), and enable further use cases such as 3D navigation, UI
components with multiple functions, and handedness-aware UIs. Using
our interaction techniques in real use scenarios showed that users perceive
them as useful, as well as natural and intuitive to use.

Simple touch source identification is feasible with a high accuracy. Based
on the raw capacitive data and deep learning, we showed that differentiating
between two touch sources is possible with a high and usable accuracy.
Palm and finger touches can be identified with an accuracy of 99.57% in a
real scenario, while left and right thumbs are identified with an accuracy of
93.14%. Our pipeline and publicly released notebooks enable other resear-
chers to easily re-implement our models or use our pipeline to differentiate
between other touch sources.

A single touchscreen is not sufficient to identify all fingers. Despite the high
accuracy for differentiating between two touch sources (e.g., palm/fingers,
and left/right fingers), the signal contained in capacitive images is not suf-
ficient to identify all five or ten fingers as shown in the previous section
and conforming to previous work [63]. We conclude that more information
about the hand (e.g., capacitive images of the hand grasping the device in-
cluding the position of all other fingers) is required to differentiate between
touches of all fingers. By sensing input on the rear, this would also enable
all other fingers to perform finger-aware input in a single-handed grip.
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4.4.3 Data Sets

An outcome of the two studies in this chapter are two data sets which consists
of labeled capacitive images representing touches from palms as well as all
ten fingers. By publicly releasing our data sets, we enable the community to
re-produce our interaction techniques similar to algorithm-based contributions
which are described detailed enough for the reader to re-implement it. We are
publicly releasing the data sets together with Python 3.6 scripts to preprocess
the data as well as train and test the models described in this chapter under the
MIT license. We further provide the trained models, the software to run our
models, and implementations of the use cases readily deployable on Android.
These will enable the community to run our models on their devices. We hope
that the provided models in combination with the dataset can serve as a baseline
that enables other researchers to further improve the accuracy.

1. PalmTouch: https://github.com/interactionlab/PalmTouch

2. Finger Identification:
https://github.com/interactionlab/CapFingerId
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5
Hand-and-Finger-Awareness on
Full-Touch Mobile Devices

In Chapter 3, we investigated which fingers can be used for single-handed in-
teraction and their comfortably reachable area beyond the touchscreen. In the
previous chapter, we presented an approach in which we use the raw capacitive
data to differentiate between touches of fingers and palms. In this chapter, we
combine these findings and develop a fully touch sensitive smartphone prototype
which is capable of identifying fingers with thw raw capacitive measurements on
the whole device surface. Based on this prototype, we further collaborated with
experienced interaction designers to elicit novel techniques to solve the limitations
of current touch interaction.

Parts of this chapter are based on the following publication:

H. V. Le, S. Mayer, and N. Henze. “InfiniTouch: Finger-Aware Interaction on Fully Touch
Sensitive Smartphones.” In: Proceedings of the 31st Annual ACM Symposium on User
Interface Software and Technology. UIST ’18. Berlin, Germany: ACM, 2018. ISBN: 978-1-
4503-5948-1. DOI: 10.1145/3242587.3242605a
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H. V. Le, S. Mayer, P. Bader, F. Bastian, and N. Henze. “Interaction Methods and Use
Cases for a Full-Touch Sensing Smartphone.” In: Proceedings of the 2017 CHI Conference
Extended Abstracts on Human Factors in Computing Systems. CHI EA ’17. Denver, Colo-
rado, USA: ACM, 2017. ISBN: 978-1-4503-4656-6. DOI: 10.1145/3027063.3053196

aVideo Figure: https://www.youtube.com/watch?v=OvvZwMJCyVU

5.1 InfiniTouch: Finger-Aware Input on Full-Touch

Smartphones

To enable hand-and-finger-aware input on the whole device surface, we develop
InfiniTouch, a system for finger-aware interaction on a smartphone’s whole device
surface. Our prototype has the form factor of a standard smartphone to avoid
influencing the usual hand grip of users [133], and does not require external
hardware. We use the contact areas on the whole device surface to train a CNN for
finger identification. The model achieved an accuracy of 95.78% for identifying
fingers on the device surface while estimating their 3D position with a mean
absolute error (MAE) of 0.74cm. Besides simple grip recognition, our model
also enables fingers to perform implicit as well as explicit input. We implemented
multiple use cases to showcase the performance of our model and the usefulness
of finger-aware interaction on the whole device surface of smartphones during
one-handed interaction.

5.1.1 Full-Touch Smartphone Prototype

We developed a full-touch smartphone prototype that provides capacitive images
for a finger identification model. We used two LG Nexus 5 as basis which
provides capacitive images with a resolution of 27×15 px on the front and back
side. As using the full hardware of both smartphones (i.e., stacking the devices)
lead to a noticeable increase in thickness, we separated the prototype into two
modules to gain flexibility in form factor: a Handheld Device, and a Hardware
Container. Each module is comprised of a self-designed printed circuit board
(PCB) that act as extension adapters to connect the Handheld Device (PCBHD)
and Hardware Container (PCBHC) with each other via flexible flat cables (FFC).
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Figure 5.1: Our full-touch smartphone prototype based on two LG Nexus 5 and a

Genuino MKR1000 for touch sensing on the edges.

Instead of manufacturing proprietary sensors, we based our prototype on two
commodity smartphones and release the schemes of our self-designed PCB so that
the community can re-implement our prototype. This enables further exploration
of interaction techniques based on finger-aware interaction on the whole device
surface. The PCB schemes, 3D models, component descriptions, and source
code to reproduce our prototype are available on our project page1 under the MIT
license.

Handheld Device

The Handheld Device (see Figures 5.1 and 5.2a) consists of a 3D printed frame,
two Nexus 5 touchscreens, 37 copper plates as capacitive touch sensors on the
edges, and a PCBHD. The 3D printed frame holds both touchscreens and encloses
PCBHD. The capacitive touch sensors are fixated on the left, right and bottom
side of the frame. Each touch sensor is a 6× y× 0.5mm (with y = 6mm for
left and right, and y = 12mm for the bottom side) copper plate which is glued

1https://github.com/interactionlab/InfiniTouch
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(a) Handheld Device (b) Hardware Container

Figure 5.2: Full-touch smartphone prototype: (a) the Handheld Device, and (b) Har-

dware Container containing the processing units. Both components are connected via

our self-designed PCB and flexible flat cables.

into engravings of the frame with a gap of 1.0mm in between and sanded down
for a smooth feeling. The copper plates are connected to the PCBHD which
in turn comprises three MPR121 capacitive touch controllers operated by a
Genuino MKR 1000 microcontroller in the Hardware Container. Similarly, both
touchscreens are connected via a board-to-board connector on the PCBHD and are
operated by the remaining components of the Nexus 5 located in the Hardware
Container. The two FFCs are routed through the top side of the Handheld
Device as there is a low likelihood that it disturbs the user when holding the
phone in a usual grip [129, 130]. The dimensions of the Handheld Device are
137.6×68.7×8.9mm (115g). In comparison, the dimensions of an off-the-shelf
Nexus 5 are 137.8×69.1×8.6mm (130g).

Hardware Container

The Hardware Container (see Figure 5.2b) is a 3D printed box that contains two
Nexus 5 circuit boards and batteries, a Genuino MKR 1000 microcontroller, three

142 5 | Hand-and-Finger-Awareness on Full-Touch Mobile Devices



micro USB breakout boards, and two tactile buttons. The circuit board of the
Nexus 5 is connected to a compatible board-to-board connector on PCBHC which
in turn is connected to the touchscreens. To access the power buttons and USB
ports of the two Nexus 5, we replaced them with tactile buttons and USB micro
breakouts integrated in the Hardware Container. Moreover, we extended the
Genuino’s USB port to a USB micro breakout board. The Genuino MKR 1000 is
connected to the PCBHC to operate the side sensors connected to the PCBHD, and
can be powered by battery via the JST connector or through USB.

(a) Motion Capture Setup (b) Marker Placement

Figure 5.3: Study setup: (a) motion capture system with 8 cameras mounted on a

aluminum profiles and (b) reflective markers (6.4mm spheres) attached to the hand of

a participant.
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5.1.2 Ground Truth Data Collection

Using our prototype, we conducted a study to collect a dataset comprising the
capacitive images and respective 3D motion data of each joint of the hand. The
former will be the input for our model and the fingertips of the latter the output.
Participants performed finger movements starting from five hand grips as shown
in Figure 5.4 to cover possible finger positions.

Capacitive Images and Interconnection

We accessed the 27×15 px capacitive images of the front and back touchscreen
by modifying the Android kernel. Each pixel corresponds to a 4.1× 4.1mm
square on the 4.95′′ touchscreen. The pixel values represent the differences in
electrical capacitance (in pF) between the baseline measurement and the current
measurement. We used I2C calls to access the register for test reporting as
described in the RMI4 specification (511-000405-01 Rev.D) and the driver’s
source code1. We pulled the capacitive images from the debugging interface with
20 fps and stored them in the proc filesystem (procfs) to make them accessible in
the application layer. As the edge sensors are square electrodes, we simply read
their values with the MPR121 library to retrieve a capacitive image.

To generate a merged capacitive image of the sensor values on all sides, the
Nexus 5 responsible for the front opens a WiFi hotspot to receive the values
from the Nexus 5 on the back and the Genuino MKR 1000. The transfer latency
measured by an average round trip time over 1000 samples is 7.2ms (SD = 2.6ms).
As the capacitive images can be pulled from the debugging interface with 20 fps
at most, the transfer latency can be neglected. Data from side sensors can be
retrieved at 130 fps. We developed an Android library that retrieves the capacitive
images, establishes a connection between front, back and side, and provides a
callback function in which developers can retrieve the merged capacitive images.

1github.com/CyanogenMod/android_kernel_lge_hammerhead/blob/cm-12.1/
drivers/input/touchscreen/touch_synaptics_ds5.c
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(a) Grip 1 (b) Grip 2 (c) Grip 3 (d) Grip 4 (e) Grip 5

Figure 5.4: Five HAND GRIPs used in the study and adopted from previous work [139].

Apparatus

To record finger motions with sub-millimeter accuracy, we used an OptiTrack
motion capture system with eight cameras (OptiTrack capturing at 240 fps). The
cameras were firmly mounted to an aluminum profile grid as shown in Figure 5.3a.
To enable these infrared cameras to record the finger movements, we attached 25
reflective markers (6.4mm spherical markers with skin adhesive M3 base) on all
joints of the hand similar to previous work [58, 130] and as shown in Figure 5.3b.
Additionally, we attached four markers on the top part of the full-touch smartphone
which enables us to track the device in six degrees of freedom. We installed a
display in front of the participant to show instructions (see Figure 5.3a).

Design

The study has three independent variables, HAND GRIP, FINGER and TASK. For
HAND GRIP we used known hand grips that were shown in previous work [139]
and in Figure 5.4. For FINGER, we used all five fingers of the right hand. As tasks,
we used free movements, in which participants freely moved a specified finger;
swipe gestures, in which participants performed swipe gestures into left, right,
bottom and up directions; and free placements with thumb in which participants
placed the specified finger followed by a thumb movement to simulate using
fingers on the rear as modifiers.

The three independent variables result in a 5×5×3 within-subject design.
We counterbalanced the GRIP using a balanced Latin square and used a random
order for FINGER and TASK. The duration of each task was 30 seconds which
results in a total duration of 30sec×5×5×3 = 37.5 minutes. During these tasks,

5.1 | InfiniTouch: Finger-Aware Input on Full-Touch Smartphones 145



participants were surrounded by eight motion capture cameras and were seated on
a chair without armrests as shown in Figure 5.3a. Including the briefing, optional
breaks, and attaching markers, the study took around 60 minutes.

Procedure

After we obtained informed consent, we collected demographic data using a
questionnaire and measured the participants’ hand size and finger lengths. We
then proceeded to attach 25 skin adhesive markers on their right hand to enable
motion tracking. Instruction slides were shown on the display which explains
the procedure of the study as well as the finger movements and hand grips that
participants should perform. We further showed them a demo of the required
movements and asked them to perform it on trial to ensure that everything was
fully understood.

After handing the full-touch smartphone to the participants, they first imitated
a grip shown on the instruction display and were then instructed to perform
the shown task. While the displayed finger specifies the main finger to move,
we allowed the participants to also move other fingers if this was necessary to
move the main finger. This is necessary to record hand grip states that are as
realistic as possible (e.g., the ring finger can only be moved individually to a lesser
extent [76]). The described process was repeated for all HAND GRIPS, FINGERS,
and TASKS. The experimenter monitored the markers throughout the study to
ensure that the finger was moved at an adequate speed and that all markers are
visible in the motion capturing.

Participants

We recruited 20 participants (7 female) between the ages of 20 and 29 (M =
24.1, SD = 2.5). All participants were right-handed. The average hand size was
measured from the wrist crease to the middle fingertip and ranged from 15.6cm
to 25.0cm (M = 19.3cm, SD = 2.0cm). Our collected data comprise samples
from the 5th and 95th percentile of the anthropometric data reported in prior work
[191]. Thus, the sample can be considered as representative. Participants were
reimbursed with 10 EUR for their participation.
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5.1.3 Finger Identification Model

We train a model to estimate the fingertip locations using the capacitive images as
input. The model output contains an estimated 3D location for each finger which
can also be used to identify the source of the contact areas (referred to as blobs).

Data Set & Preprocessing

We synchronized the motion data with the capacitive images of the front, back,
and edges of the full-touch smartphone. We used the capacitive images as input
and the 3D motion data of the fingertips as ground truth for our machine learning
model. We performed the following four data preprocessing steps:

1. Labeling and cleaning motion data: We labeled all markers in the captured
3D motion data using semi-automatic labeling provided by OptiTrack’s
Motive:Body software. We did not use any reconstruction and smoothing
approaches to avoid generating artificial marker positions.

2. Transforming global to local coordinate system: We transformed each
hand marker from the global coordinate system into the phone’s coordinate
system and projected them onto the device surfaces. We validated the
transformation by sampling five random frames per participant which we
manually checked for correctness.

3. Removing incomplete and erroneous data: To ensure a complete and valid
data set for model training, we keep only frames in which the rigid body
and finger tips are fully available. Further, we applied a heuristic to detect
erroneous rigid body tracking by assuming that the phone was not held
in uncommon poses (e.g., up-side-down, flipped). This heuristic removed
0.21% of all frames.

4. Synchronizing motion data and capacitive images: We merged the capa-
citive images with the transformed motion data using timestamps as the
merge criteria. As touchscreen latency is unavoidable and higher than the
latency of a motion capture systems [32], the finger’s ground truth position
is ahead of the touch, especially during fast movements. To counteract
the latency, we used a sliding window of 240 frames for each capacitive
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image to find a motion capture frame in which the currently moving finger
is within the generated blob (preferably in the center). We validated the
merging process by checking whether the motion data corresponds to the
blobs in the capacitive images. This was done by determining the blob’s
contour and checking whether the 2D position of the fingertip lies within
the contour.

In total, our dataset consists of 9,435,903 valid samples stored in a 67.3GB HDF5
file1 to enable training on a large dataset.

Estimating the Fingertip Positions using CNNs

To develop the model, we used a participant-wise split of 70%:20%:10% for
the training, test, and validation set. I.e., the model is trained on data from 14
participants, tested on 4 participants, and validated on the remaining 2 participants.
We implemented CNNs using Keras 2.1.3 based on the TensorFlow backend.
We performed a grid search as proposed by Hsu et al. [101] to determine the
most suitable network architecture and hyperparameters. If we do not report a
hyperparameter in the following, we applied the standard value (e.g., optimizer
settings) as reported in Keras’ documentation.

Our final CNN architecture is shown in Figure 5.5. The input consists of
capacitive images with 28×32 pixels normalized to a range between 0 and 1. The
output consists of 15 values ((x,y,z) for five fingers) that represent the estimated
3D finger positions relative to the upper left corner of the display in mm. Thereby,
a finger farther away from the device (e.g. lifted finger) has a higher distance in
the z-axis as captured in the data collection study. We trained the CNN using
an RMSprop optimizer [229] (similar to the AdaGrad [51] optimizer but with a
less radical learning rate decay) with a batch size of 500. We experimented with
different learning rates and found that an initial learning rate of .0001 leads to
the best performance. We used batch normalization [103] and a 0.5 dropout after
each pooling and dense layer to prevent overfitting. While we experimented with
L2 Regularization, it did not improve the overall performance in our experiments.
We initialized the network weights using the Xavier initialization scheme [65].

1support.hdfgroup.org/HDF5/whatishdf5.html
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Figure 5.5: An illustration of the architecture of our CNN for finger position estimation.

The network input is 896-dimensional, and the number of neurons in the network’s

remaining layers is given by 57,334–57,334–28,672–28,672–256–128–15.

After experimenting with traditional loss functions for regression such as
root mean squared error (RMSE), we developed a custom loss function to train
our CNN. As fingers above or below the device cannot be physically tracked
by the touchscreen (e.g., thumb resting above the display), errors induced by
movements perpendicular to the touchscreen would affect the RMSE loss function
as substantial as an error in horizontal (x) or vertical (y) direction. However, when
omitting the z axis, the CNN would lose a feature to differentiate whether fingers
are touching the device. Since a less accurate estimation of the z-axis can be
easily compensated by checking the blob availability at the time using the model,
we lowered the influence of the z-axis error by using an RMSE for the x and y
axis, and a root mean squared logarithmic error (RMSLE) [104] for the z-axis as
follows:

loss =

√
∑

n
i (pxyi − p̂xyi)

2

n
+

√
∑

n
i loge((pzi − p̂zi)+1)2

n
(5.1)

with n = 5 representing the five finger tips, p for the ground truth point, and p̂ for
the estimated point.

5.1 | InfiniTouch: Finger-Aware Input on Full-Touch Smartphones 149



Identifying Touches from Individual Fingers

To identify the finger touching the device (i.e., the responsible finger for a specific
contact area), we used a nearest neighbor approach to map the estimated positions
to the blobs in the capacitive images. This approach has two benefits over using
the estimated positions directly from the CNN. Firstly, the jitter caused by noise
and the nature of machine learning can be prevented since the contact areas on
the capacitive images are more stable. As recent touch controllers have shown, a
blob can be converted to a precise touch position without any jitter. Secondly, the
processor workload can be reduced since model inference is only necessary when
fingers are initially touching (i.e., down event) and releasing (i.e., up event) the
device. In other cases (i.e., finger moving), fingers can be tracked using the blob
position on the capacitive images.

On a technical basis, we performed a contour detection on a 5× up-scaled
capacitive image to determine the blobs. We then used the contour points sto-
red in a k-d tree [60] to find the closest blob for an estimated finger position in
O(logn) time. We used OpenCV for the contour detection and the Lanczos4 algo-
rithm [233] to scale up the capacitive image. We used the k-d tree implementation
from scipy for the validation and a reimplementation thereof in our Android demo
applications.

5.1.4 Validation

While we used the training and test set to experiment with hyperparameters, we
used the validation set to evaluate our best model. Our CNN achieved an MAE of
0.74cm. Table 5.1 shows the errors for each finger and axis. The MAE for the
axes are 0.85cm, 0.85cm, and 0.53cm for the x, y, and z axis respectively while
the RMSEs are 1.41cm, 1.39cm, and 0.87cm. The average Euclidean distance
for all fingers when considering the error in 2D space (on screen) is 1.33cm
whereas the average error in 3D space is 1.52cm. Since the RMSE involves a
larger penalty for larger errors (e.g., outliers), an RMSE > MAE indicates that
errors can occur especially for uncommon finger placements. As expected, the z
axis has the lowest error since the usable movement range perpendicular to the
displays is the smallest of all axes.

150 5 | Hand-and-Finger-Awareness on Full-Touch Mobile Devices



These errors can be compensated with the finger identification approach as
described above. The accuracy of our model with this approach can be evaluated
as a multi-label classification problem; multi-label since multiple fingers could
be matched to one blob due to the low resolution of the capacitive image. We
used both the ground truth fingertip positions and the estimated fingertip positions
and matched them with their closest blobs. Based on the matchings, we used the

Figure 5.6: This image shows exemplary capacitive data retrieved from our prototype

when held with Grip 1 as shown in Figure 5.4a. The colored contours represents the

results of our finger identification model after mapping the estimations to the blob. The

X’s represents placeholder values that are required to build a 32×28 input matrix for

the model.
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Thumb Index Middle Ring Little Average

MAE (x) 1.04 1.03 0.98 0.63 0.56 0.85
MAE (y) 0.73 0.52 0.96 0.99 1.06 0.85
MAE (z) 0.50 0.28 0.46 0.50 0.89 0.53
RMSE (x) 1.80 1.75 1.63 1.06 0.79 1.41
RMSE (y) 0.98 0.87 1.43 1.74 1.93 1.39
RMSE (z) 0.73 0.86 0.79 0.72 1.26 0.87
Eucl. dist. (x, y) 1.40 1.25 1.45 1.25 1.30 1.33
Eucl. dist. (x, y, z) 1.55 1.32 1.57 1.42 1.76 1.52

Table 5.1: The mean absolute error (MAE), root mean squared error (RMSE) and

Euclidean distances for each axis in cm.

Hamming score [232] which describes the accuracy of a multi-label classification
on a scale between 0 (worst) to 1 (best). Our model achieved an average Hamming
score of 0.9578.

5.1.5 Mobile Implementation and Sample Applications

We combine the full-touch smartphone, CNN, and nearest neighbor approach
to implement InfiniTouch. We present our implementation and a set of sample
applications.

Mobile Implementation

We used TensorFlow Mobile1 for Android on the processing unit responsible for
the front display to run the CNN that estimates the fingertip positions. Capacitive
images from the back side and the edges are sent to the front device that merges the
data into an input matrix. The input consists of a 32×28 8-bit image representing
the front, back, and edges as shown in Figure 5.6. A model inference for one
capacitive image takes 24.7ms on average (min = 17ms, max = 29ms, SD =
2.8ms) over 1000 runs on our prototype. As this is faster than the sampling rate
for the touchscreens’ capacitive images, the inference can be performed on each
sample in the background. With processor manufacturers recently optimizing
their processors for machine learning (e.g., Snapdragon 845), model inference

1www.tensorflow.org/mobile/
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can be sped up significantly.1 The model can be further optimized for mobile
devices with techniques such as quantization [78] and pruning [7] for a small loss
of accuracy.

For the finger identification, the contour detection, including a scale up, takes
M = 2.85ms (SD = 0.77ms, min = 1ms, max = 4ms) while finding the closest
blob takes M = 0.48ms (SD = 0.12ms, min = 0.19ms, max = 0.96ms) over 1000
runs on our prototype. Tracking the blobs take M = 0.08ms (SD = 0.04ms, min
= 0.001ms, max = 0.82ms). During these benchmarks, the device was held
one-handedly with all five fingers touching the device (c.f. Figure 5.4a).

Using Finger Identification in the Application Layer

We extended our Android library described above to provide the finger posi-
tion estimations from the model and the respective position of the blob (i.e.,
position of the upper-left contour point, and size) for each finger in a callback
function. This enables developers to access the finger positions similar to An-
droid’s OnTouchListener interface. Besides the position (in an on-device coor-
dinate system with the upper left corner of the front display being (0,0,0)), we
also provide the event (i.e., down, up, and move). With this, the blob’s position
and estimation can directly be fed into Android’s MotionEvent which enables to
use Android’s own GestureDetector, or third-party gesture recognizers such
as $P [236], $1 [258], $N [6], and the gesture recognition toolkit [64].

Sample Use Cases

Based on the mobile implementation of our model, we implemented two use
cases for finger-aware interaction on the full-touch smartphone. We describe our
implementation in the following and showcase them in the accompanying video.

Finger-Specific Touch Gestures Implementations of BoD interaction in previ-
ous work [133, 197, 215] treated inputs of all fingers equally. Thus, performing
a gesture with the index finger would result in the same function as a gesture
performed with the middle finger. With InfiniTouch, the same gesture can activate

1www.qualcomm.com/snapdragon/artificial-intelligence
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(a) Finger-Specific Gestures (b) Flexion State as Modifier (c) One-Handed Pinch

Figure 5.7: Screenshots of our sample applications implemented on the InfiniTouch.

Figure (a) showcases how a down-swipe with both index and middle finger selects all

files in a file manager, Figure (b) demonstrates how the position of the middle finger

can be used to switch between a pen and an eraser, and Figure (c) demonstrates an

exemplary one-handed pinch gesture.

different functions depending on which finger performed the input. This extends
the input space similar to a computer mouse where the index finger is used for
main actions, while the middle finger is used for the right mouse button to activate
secondary actions.

In our sample use case, we mapped a swipe down performed by the index
finger to copying selected items into the clipboard (inspired by the come to me
gesture) while a swipe down by the middle finger pastes from the clipboard. A
swipe down performed by both index and middle finger simultaneously selects
all items as shown in Figure 5.7a. While we demonstrated this concept within a
file manager, it can also be used in text editing applications, galleries, and further
applications that support the clipboard.
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BoD Finger Flexion State as Action Modifier While hardware keyboards provide
modifier keys to modify the action of another key, touchscreens implement this
concept only via dwell times or applied force which requires additional execution
time. We propose to use the position of the fingertips (i.e., their flexion state)
on the back to modify the actions performed on the front screen. For example,
bending a specific finger can be done comfortably [130] and could be used
similarly to a pressed Ctrl key on a hardware keyboard.

We implemented a simple paint application that maps drawing and erasing
to the flexion state of the middle finger. When the middle finger is flexed, the
pen is activated which enables the user to draw. When bending the middle finger
(c.f. Figure 5.7b), the eraser will be activated to remove parts of the drawing.
While we demonstrated this concept within a paint application, it can be applied
to a wide range of applications that benefit from action modifiers and with all four
fingers. Amongst others, this includes opening context menus similar to the right
mouse button, text selection and highlighting, mode switching (e.g., slower and
faster scrolling), 3D navigation, and providing shortcuts.

Further Use Cases

We present further use cases for InfiniTouch.

One-Handed Pinch and Rotation Gestures Users need to hold smartphones
two-handed or place it on a surface to perform a pinch or a rotation gesture.
We propose to use a pre-defined finger on the back of the device as the second
finger to perform a pinch/rotation gesture with the thumb on the front screen.
This enables users to zoom or rotate objects in a one-handed grip as shown in
Figure 5.7c.

Enabling Transient Actions Avery et al. [9] proposed transient gestures to ena-
ble users to temporarily change the view of an application which can be rapidly
undone. As a zoom in always requires a zoom out to return to the initial state, they
used an additional finger on a tablet to save the initial state. When this additional
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finger is released, it restores the initial state so that users can alter the view in
between. Using our concept of finger positions as a modifier, we could replace
the additional finger with a finger on the rear that is able to bend and flex.

Improving Reachability Bergstrom-Lehtovirta and Oulasvirta [20] showed that
the thumb’s range could be modeled with the position of the index finger’s tip
as input. With InfiniTouch, we can determine the position of the index finger
and can thus adapt the user interface to optimize reachability during one-handed
interaction. Moreover, we can assign the functionality to move the screen content
to a specific finger. This enables the finger to move the screen content to a more
reachable position to improve one-handed interaction as proposed in previous
work [133].

5.1.6 Discussion and Limitations

We developed InfiniTouch, a system that enables finger-aware interaction on full-
touch smartphones. We developed a full-touch smartphone prototype and trained
a CNN to identify fingers touching the device surface. We implemented and
showcased a number of applications.

Model Accuracy

We trained a CNN that estimates the fingertip positions with an MAE of 0.74cm
over all three axes. As a comparison, the average diameter of a human index
finger is 1.6cm - 2.0cm [44] while Holz et al. [98] found that traditional touch
interaction has a systematic offset of 0.4cm. Even without using the positions
of the blobs, this already enables users to perform precise interactions, such
as gestures or finger placements as modifiers. Moreover, using the estimated
positions enables differentiation between fingers even if their contact areas are
united due to a low-resolution image. A limitation of our model is that estimations
of more distant fingers (e.g., a finger moving without touching the device) become
less accurate since they cannot be sensed physically.

Based on the estimations, we used a nearest neighbor approach to identify
the responsible finger for each blob with an accuracy of 95.78%. As we perform
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this process only when the number of blobs in the capacitive image changes, we
reduce the processor workload and potential jitter due to noise and the nature of
machine learning. Moreover, since we track the blobs while keeping their label
(if the number of blobs did not change), labeled blobs stay correctly labeled even
if the model yields an inaccurate estimation in a rare hand posture. This means
that we only identify fingers when they initially touch or release the device (e.g.,
new hand grip) with an accuracy of 95.78% while classification errors cannot
occur afterwards. We provide both blobs as well as estimated positions in our
Android library, and successfully implemented our sample use cases with both
approaches. Further, the estimated location could be used as a fallback in case the
blob detection is not capable of telling two blobs apart due to the low resolution.

Improving Accuracy and its Sufficiency for Use Cases

Our model estimates the 3D finger positions with an MAE of 0.74cm and clas-
sifies blobs with an accuracy of 95.78%. While this is sufficient for a reliable
recognition of gestures and the use of absolute positions, future work could further
improve the accuracy as follows. Although our 32×28 capacitive images already
comprise over 14 times the amount of sensors of previous approaches based on
flexible PCBs (e.g., 64 [33] or 24 [168, 169] measurements), further increasing
the resolution could help to improve classification accuracy. High-resolution
capacitive images certainly benefit the blob matching due to clearer contact area
boundaries and also benefit the MAE since more features of the finger become
detectable. Possible technologies include FTIR that enables high-resolution multi-
touch sensing [77] and infrared sensors integrated into the LCD layer similar to
the SUR40 interactive display by Samsung1. While these technologies are yet to
be mass-produced for mobile devices, our prototype is based on hardware that is
already publicly available which enables the community to reproduce InfiniTouch.

The accuracy of our model is well beyond the 80% that previous work consi-
dered sufficient [113]. However, sufficiency also depends on the action’s conse-
quence (easily recoverable action vs. permanent action) and how inferences are
translated to actions. For InfiniTouch, the consequence depends on the action that
future developers implement while a wide range of translation approaches can

1www.samsung.com/ae/business/smart-signage/interactive-display-sur40/
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further minimize accidental activations. For example, accidental activations of
BoD gestures can be minimized using the confidence score of gesture recognizers,
using thresholds for a minimum gesture length, or using heuristics to differentiate
gestures from grip changes (e.g., only one finger can move at a time). While our
implementation works reliably for the implemented use cases, we also suggest
that future BoD gestures should be designed with false positives and negatives in
mind. Moreover, the flexion state example could also involve users in avoiding
unintended actions by using visual elements to indicate the recognized flexion
state (i.e. action).

Practicality of Use Cases

We designed the sample use cases solely to demonstrate the possibilities offered
by InfiniTouch. Thus, we chose fingers and movements that are easy to explain
and understand, but we also designed them to be ergonomically viable based
on findings described in Chapter 3. Designing our explicit BoD gestures, we
considered these findings that showed that index and middle fingers can move
comfortably within a large area (around top to center for similar devices) without
grip changes and independent from the grip. This indicates that our presented
BoD gestures can be performed comfortably without a grip change. Moreover,
subtly bending the middle finger for the second use case also takes place within
the comfortable area. As we focus on the technical contribution, future work
could investigate the comfort of such BoD gestures and how to communicate
them to end users [159].

Reproducibility with Publicly Available Hardware

We presented an approach to prototype a full-touch smartphone with publicly
available hardware. While we used an LG Nexus 5 as the basis, our approach
can be applied with any smartphone. This enables the community to reproduce
our prototype and use our model to explore finger-aware interaction with Infi-
niTouch. As a tradeoff, data from both touchscreens and the edge sensors need
to be synchronized over network which adds a latency of 7.2ms while an ad-
ditional hardware container is required. Despite an additional container, our
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prototype can still be used in mobile situations (e.g., in walking studies) since the
hardware container is designed to be fixated on the forearm. Moreover, smartp-
hone manufacturers could produce proprietary components for future commodity
smartphones so that a hardware container is not needed in a mass-market version.
These components could comprise flexible PCBs with a sufficient amount of
sensors. These are already used in consumer products (e.g., the Microsoft Touch
Mouse) and provide capacitive images of touches. Using such components would
also avoid the synchronization of data over the network while manufacturers can
directly use our model for finger-aware touch interaction on the whole device
surface.

Specialization on Common One-Handed Grips

The model presented in this chapter focuses on one-handed grips. Previous
work has shown that fingers can comfortably reach around 70% of the back
(for similar device sizes [129, 130]) during one-handed smartphone interaction
without grip changes. This enables the fingers on the back to be used for a
wide range of explicit (e.g. BoD/side gestures) and implicit interactions (e.g.
flexion/grip sensing) to increase the expressiveness of one-handed touch input.
Since our comprehensive dataset covers a wide range of typical one-handed grips
as performed in the study, our model also works when some fingers of the holding
hand are not touching and stays robust even when other hand parts (e.g. palm)
are touching or releasing. Two-handed grips and further touches beyond usual
one-handed grips (e.g., using other body parts) are currently not expected by
our model and would lead to unexpected estimations. However, with minor
adaptations to the implementation, our model can even be used to identify finger
positions of the holding hand while the other hand performs input on the front.
While we focused on right-handed grips to show the feasibility of our approach,
our procedure and publicly available source code enables researchers to easily
extend our work to other devices and use cases (e.g., left-handed or bimanual
grips for tablets).
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5.2 Exploring Interaction Methods and Use Cases

After we showed the technical feasibility of fully touch sensitive smartphones,
we collaborated with experienced interaction designers to elicit novel ways to
solve the limitations of current touch input. To avoid the influence of the technical
details of our prototype on the participants, we used a mockup of our prototype to
demonstrate InfiniTouch.

5.2.1 Interviews

We conducted semi-structured interviews to explore interaction methods and use
cases for a full-touch smartphone. Particularly, we focus on following questions:

1. How can we use a full-touch smartphone to address common touch input
limitations such as the fat-finger problem or reachability issues?

2. What are novel use cases for a full-touch smartphone?

Participants & Prototype

Since we are interested in answers based on interaction design experiences, we
recruited 8 participants who have worked with smartphones from an interaction
design perspective. Participants were between 23 and 50 years old (M = 31.6, SD
= 9.2) with two of them being female. The participants comprised two professors
for mobile communication and mobile application development from a local
university, one project lead for strategy and interaction design at a design company,
and graduate and PhD students in the field of interaction or communication design.

To give participants a better vision of a full-touch smartphone, we presented a
video of the concept and handed them a mockup during the interview (see Figure
5.8a). The mockup consists of the same 3d-printed frame and two 5′′ touchscreens
as used for the InfiniTouch prototype presented in Section 5.1. We removed all
cables, copper plates, as well as the hardware container to avoid influencing the
participants with technical details of our prototype. Participants used the mockup
to demonstrate actions of which we took photos.
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(a) Mock Up Device (b) Coding and Clustering Example

Figure 5.8: Figure (a) a mockup of our full-touch smartphone prototype to avoid

affecting the participant with unusual sensors. Figure (b) shows how we coded and

clustered the participants’ answers into respective clusters.

Procedure

The semi-structured interviews took place in a quiet room within the company or
institution of the participant and were audio-recorded. Interviews lasted about 40
minutes and comprised four parts: Firstly, we asked ice-breaker questions about
participants’ smartphones and situations in which they are using it. Secondly,
we asked participants about limitations and difficulties that they encounter while
dealing with touch input on usual smartphones. Prior to the third part, we introdu-
ced the prototype as described above. We then explored interaction techniques
on a full-touch smartphone which addresses the limitations mentioned by the
participant in the previous part. We ensured that all participants proposed soluti-
ons for at least the fat-finger and occlusion problem, as well as the reachability
issue. In the last part, we explored novel use cases for a full-touch smartphone.
Participants were asked to suggest scenarios in which the additional surfaces of
such a smartphone can be used to implement functionality which is not feasible
on recent smartphones.
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5.2.2 Results

All audio recordings were transcribed. Based on the transcript, we extracted all
comments and printed them on paper. Two researchers then employed a simplified
version of qualitative coding with affinity diagramming [79] to analyze the results
(see Figure 5.8b for an example).

Limitations of Smartphone Input

When asked about limitations and difficulties in interacting with recent smartp-
hones, the majority of participants were unanimous about the fat-finger problem
[16]. They described this through “too big fingers” (P1, P3, P6) and “undersized
user interface elements” (P1, P3, P5, P6, P8). Consequence of this are occlu-
sion issues (“When drawing, I cannot see the result.” - P6) which also leads to
users “[not knowing] what a touch is triggering” (P8). The latter phenomenon
is caused by a misconception of the registered touch point between user and
touchscreen [98] and the lack of haptical feedback which renders blind input
nearly impossible (P3, P6). Thus, participants argue that users are required to
frequently look at the touchscreen to adjust their input which leads to a high
cognitive demand when doing something else simultaneously (“[..] is difficult as
I need to see where I am walking and where I want to touch simultaneously.” -
P3). This becomes even more detrimental when external disturbances, such as
jerks while running (P2) or bumps in public transport (P3), affects the user.

Despite software-based solutions like iPhone’s Reachability1 or Samsung’s
one-handed mode2, participants (P2, P5, P7) still regard the limited thumb range
during one-handed use as a input limitation (see Figure 5.9a). As these methods
require a manual activation, participants “do not see any additional value com-
pared to just [adapting] the hand grip.” (P2). However, adapting the hand grip
and therefore tilting the device while stretching the thumb leads to unintentional
input (“[..] when trying to reach targets on the upper left corner, my palm uninten-

1“How to use Reachability on your iPhone”. 2016. URL:
https://www.cnet.com/how-to/how-to-use-reachability-on-iphone-6-6-plus/

2“How to use the Samsung Galaxy Note 4 with one hand”. 2016. URL: https:
//www.cnet.com/how-to/how-to-use-the-samsung-galaxy-note-4-with-one-hand/
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(a) Reachability Problem Demonstration (b) Changing Camera Settings

Figure 5.9: Figure (a) depicts a participant demonstrating reachability issues on smartp-

hones. Figure (b) depicts a participant showing how to change camera settings on the

edges.

tionally touches the touchscreen which is not filtered out by the operating system.”
- P7). Especially when holding objects in the other hand (i.e. being encumbered
[177]), this can become a critical issue for the users according to P1, P3 and P5.

Improving Smartphone Interaction

With experienced interaction designers, we explored different interaction methods
to overcome the described limitations of touch input on smartphones. We describe
the interaction methods clustered into categories and explain how they help to
overcome the limitations.

Back-of-Device Input and Feedback. As occlusion issues and lack of feedback
on the registered touch position can be detrimental, participants suggested two
methods based on BoD input to tackle these limitations. P2-P8 envisioned to use
the back side to control a cursor on the front screen to avoid occlusion through the
finger. As the lower area of the back side is already covered by the hand holding
the device, P2 suggested to only use the upper half either by mapping the front
screen to this area, or to control the cursor in a relative manner similar to laptop’s
touch pads. Moreover, participants all agreed that a confirmation is required
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(a) Scrolling on the Right Edge (b) Metaphorical Grip Pattern

Figure 5.10: Figure (a) depicts a participant demonstrating scrolling on the device’s

right edge by swiping down the thumb. Figure (b) depicts a participant demonstrating a

metaphorical grip pattern.

to avoid unintentional input, e.g. by squeezing the device or applying pressure
onto the desired touch position (P2). Similar to prior work [16, 250], P2 and
P3 envisioned a pseudo-transparent touchscreen by showing the registered touch
point and finger shape of the back side as an overlay on the front screen. Thus,
users would receive feedback on their finger and touch position while occlusion
can be avoided.

Gestures & UI on Adjacent Sides. Participants (P1, P3-P5, P8) argued that not
only fingers do occlude desired content but also input controls such as buttons,
menus or sliders. This is especially the case for games (P1, P3, P8), camera
applications (P4, P8), image editors (P1) or maps (P8) as their main focus lies on
the graphical content. Thus, participants suggested to move input controls to the
device’s edge (P1, P3-P7) or back (P2, P3, P6).

When asked for examples, P5 and P8 envisioned a camera application with in-
put controls on the edges (see Figure 5.9b). Similar to usual cameras, adjustments
(e.g. focus, brightness, etc.) can be made on the device edges without occluding
the front screen. Other examples include movements such as pinching or dragging
a slider: P8 suggested to use the back side to perform scrolling or zooming opera-
tions while P3 envisioned the edges for scrolling or for manipulation of values
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similar to sliders (see Figure 5.10a). Interestingly, when demonstrating the slider
on the edge, participants reportedly stated that “it feels more comfortable and
natural than on the front screen, especially when using the device one-handed”
(P1, P3, P8). Similarly, games also profit from a move of input controls to the
edge or back of the device (P1, P3, P8).

As touch buttons and sliders do not provide any haptical feedback which
makes it difficult to locate them, participants suggested to visualize buttons and
sliders with ambient lights on the edges while augmenting them with vibration
feedback similar to the home button of an iPhone 7 (P5).

Simultaneous Use of Multiple Sides. Conforming to prior work [276], partici-
pants (P1, P3, P6, P7) suggested to use the edge and back side as a proxy space for
areas that are not reachable by the thumb due to its limited length. For example,
input controls on the top half can be accessed by the index finger from the back
side while input controls on the lower half can be accessed by the thumb on the
front. Moreover, due to thumb and index finger moving independently, three
participants envisioned simple gestures on the back side to e.g. trigger system
actions (e.g. “switching or closing apps” - P6) or to move the screen content to a
more reachable position (P2, P5) (cf. [133]).

Similarly, P7 suggested a function to zoom into parts of the screen depen-
ding on the position chosen on the device’s edges. P1 suggested double-sided
buttons that trigger different actions depending on the touching side. For exam-
ple, “clicking the button from the front side opens a window to write a message
while clicking from the back side opens a window to write a direct message to a
pre-defined contact” (P1).

Squeeze Interaction. Participants envisioned actions to be triggered when the
phone is squeezed. This includes accepting calls or hanging up (P5), taking
photos (P1), zooming in and out (P5), or spawning a quick-launch bar (P1).
This is beneficial as prior work found that squeeze interaction is not affected by
encumbrance or walking jerks [59].
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Hand Grip Pattern Recognition. Participants envisioned to train specific hand
grips to accept or decline calls (P2), change the song or volume (P4) or to launch
applications (P2). Metaphorical grip patterns (e.g. a finger pinching the corner)
could be interpreted as modifiers by e.g. keeping the screen as it is when rotating
the device (P7, see Figure 5.10b).

Moreover, users’ natural hand grip can be recognized to adapt the user inter-
face. For example, the user interface adapts to the user’s handedness (P3, P6), or
arrange controls based on the finger’s position (P3, P4). Grip patterns can also
be used to suggest subsequent actions, or facilitate actions by e.g. enlarging the
keyboard when needed (P2).

Use Cases and Opinions

With more information available about the hand grip and finger placement, par-
ticipants envisioned the system to use this information to recognize different
features, such as handedness, grip stability, range of the thumb for a dynamic
placement of buttons, or the users frustration (P6). Moreover, patterns can be
used to authenticate the user similar to what Bodyprint [99] does for the front
screen (P1, P2, P7). In general, these ideas require research to be done which is
why P3 also envisioned a full-touch smartphone as a research tool. We imagine to
use such a device to seek understanding on how the hand interacts with the device
without the need of cameras or motion trackers. This enables studies also to be
conducted in mobile situations.

In general, participants liked the idea of a full-touch smartphone (e.g. “super
exciting” - P2; “attracts attention” - P5; “exciting possibilities” - P8) and thus
came up with 17.8 (SD = 3.0) ideas on average per participant. Despite the
excitement, some participants were concerned about unintentional input (P1, P4,
P5, P7), lack of compatibility with recent user interfaces (P3, P8), and increased
battery consumption (P6).

5.2.3 Discussion

In the context of semi-structured interviews, eight participants suggested different
interaction methods for a full-touch smartphone. Based on their experiences in
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interaction design, participants argue that these interaction methods are poten-
tial solutions to common touch input limitations. Suggestions to deal with the
fat-finger and occlusion problem include performing input on the back of the
device augmented with positional feedback on the front side, and outsourcing UI
components to the edge of the device. As solutions to the reachability issue, parti-
cipants suggested to use adjacent sides as a proxy space to perform input or scroll
operations since these are easier to reach. They further suggested interaction by
squeezing the device, or to map certain hand grip patterns to functionality. As both
interaction methods can be blindly performed, they are suitable for interaction
when less focus is available, e.g., while being encumbered or while walking [21,
177].

Some suggestions, such as performing BoD input [16] or arranging the UI
according to the grip location [35], were already researched in prior work in
HCI and shown to be effective. Besides this, participants also explored novel
ideas. Amongst others, these include outsourcing the UI and occluding input
(e.g. scrolling gestures) to the edge of the device, or the use of multiple sides
simultaneously (i.e. proxy space) to increase reachability. Evaluating these ideas
requires a full-touch smartphone with dimensions and haptics similar to a mass-
market smartphone to avoid influencing the usual hand grip and behavior of the
user.

5.3 General Discussion

In this chapter, we presented a fully touch sensitive smartphone prototype which
uses deep learning to identify input from all fingers in a single-handed grip.
For this device, we interviewed experienced interaction designers to elicit novel
methods to solve the challenges of recent touch input.

5.3.1 Summary

Addressing RQ4, we first developed a fully touch sensitive smartphone prototype
which provides capacitive images representing touches on the whole device sur-
face. We designed the smartphone prototype to achieve the form factor of a
standard smartphone to avoid affecting how users usually hold a mobile device.
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Based on the capacitive images, we then applied deep learning to train a model
which estimates the 3D position of the finger tips holding the device. The es-
timation achieved an MAE of 0.74cm and can be used to identify the input of
individual fingers with a nearest neighbor mapping to the blobs on the capacitive
image. Previous work [63] and our investigation in Section 4.3 suggested that
capacitive images from the front touchscreen do not contain sufficient signal to
identify each finger during regular interaction. Thus, previous work proposed
using additional sensors (e.g., cameras [38, 284]) and wearable sensors [74, 75,
152] to enable finger identification. While these approaches are inconvenient and
immobile, we showed that all fingers of the holding hand can be accurately identi-
fied with our approach on a fully touch sensitive smartphone. Since our prototype
provides the capacitive images of the whole hand (instead of just a single finger
tip as on a recent smartphone with a single touchscreen), the model has enough
information to reconstruct the 3D positions of the holding hand. Since our model
is solely based on capacitive sensing, finger identification can be integrated into
future commodity smartphones (with touch sensing on the whole device surface)
without any external or wearable sensors.

Addressing RQ5, we interviewed experienced interaction designers from
industry and academia to elicit use cases for fully touch sensitive smartphones
as well as solutions to the limitations of recent touch input. Amongst others,
the experts perceived the fat-finger problem, reachability issues, as well as a
lack of mechanism to access frequently used functions (e.g., camera settings) as
notable limitations of recent touch input. Accordingly, our participants proposed
a wide range of solutions to these challenges. In the next chapter, we will present
the whole process to design, implement, and solve the challenge of the lack of
shortcuts.

5.3.2 Lessons Learned

Based on our developed prototype and the expert interviews, we derive the
following insights:

Identifying fingers is feasible on a fully touch sensitive smartphone. In
contrast to recent commodity smartphones, our fully touch sensitive smartp-
hone provides capacitive images representing touches on the whole device
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surface. Information about the grip enables our deep learning model to
accurately estimate the 3D position of the finger tip and, with a nearest
neighbor algorithm, to also accurately identify the input from different
fingers. Since our approach is based on capacitive sensing only, no further
sensors are required which reduces mobility, convenience, or would notably
increase the size of the device.

Keeping standard device form factor by outsourcing processing units. In
contrast to stacking or attaching an external touch pad to the back of a de-
vice, we presented a novel approach to prototype BoD and edge interaction
without notably altering the device size. This avoids affecting the usual
hand grip of users.

Full-touch smartphones can solve common touch input limitations. The
expert interviews revealed that a fully touch sensitive smartphone with
hand-and-finger-awareness provides a wide range of opportunities to solve
typical touch input limitations such as the fat-finger problem, reachability
issues, and the lack of shortcuts.
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6
Improving Shortcuts for Text
Editing

In the previous chapters, we investigated the hand ergonomics and the technical
feasibility of using multiple fingers and hand parts for interaction with mobile
devices. With this, we understood and specified the context of use and laid the
groundwork for developing novel interaction techniques which can solve the
limitations of touch input.

In this chapter, we focus on addressing the limitations of mobile text editing as
a specific challenge. We present four studies which cover all steps of the UCDDL
as presented in Section 1.2.3 to solve the limited shortcut capability in order to
increase the usability of mobile text editing.

This chapter is planned to be published as follows:

H. V. Le, S. Mayer, J. Vogelsang, H. Weingärtner, M. Weiß, and N. Henze. “On-Device
Touch Gestures for Text Editing on Mobile Devices.” In: Under Review at the ACM
Transactions on Computer-Human Interaction. TOCHI.
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6.1 Text Editing on Mobile Devices

Due to their mobility, smartphones are utilized for tasks that were previously ex-
clusive to desktop computers. Mobile word processors [166], spreadsheets [164],
and even presentation programs [165] are installed over 100 million times and
became viable alternatives to their desktop counterparts. Moreover, recent ad-
vances in the field of mobile text entry enabled users to type with a speed that
is almost comparable to hardware keyboards. This indicates that users strive
to use smartphones as a mobile alternative to desktop computers for tasks such
as text editing. Indeed, tasks such as writing emails or browsing the internet
are already common tasks for most users on their smartphones [219]. However,
the trade-off for the mobility is a small display size. This poses a number of
challenges especially for text editing on smartphones, which could be one reason
why it is not widely adopted yet.

The fat-finger problem [16, 217] is a well-known challenge and makes precise
caret placement and text selection frustrating. Further, a large number of shortcuts
known from hardware keyboards (e.g., Ctrl+C) are not available or hard to
access. Instead, inferior concepts such as long-presses are used that require
a dwell time. The lack of shortcuts contradicts Shneiderman’s golden rules
for interface design [210] and slows down text-heavy activities especially for
experienced users. Previous work [61] and commercial products used on-screen
gestures as shortcuts to frequently used functions. However, a comprehensive set
of gestures would interfere with the UI (e.g., conflicts with gesture keyboards)
while the gesture recognition accuracy would decrease due to ambiguity errors.

Additional on-screen buttons for frequently used functions could be a solution.
However, a large number of buttons would clutter the interface. Thus, more
and more smartphones incorporate input controls beyond the touchscreen. This
includes BoD touch panels (e.g., Meizu Pro 7), pressure sensitive frames (e.g.,
Google Pixel 2), and physical buttons such as the Bixby button on Samsung
devices. In addition, our full-touch smartphone prototype enables users to perform
input on the edge and rear which increases the input capabilities. This enables
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recently unused fingers on the back to activate functions which support text
editing activities on the front side, and avoids interfering with the UI in contrast
to gestures performed on the front screen [61].

6.1.1 Study Overview

Before using the whole device surface to provide text editing shortcuts, it is
vital to understand which shortcuts are frequently needed and how they could
be accessed on a full-touch smartphone. Thus, this chapter presents the results
of four studies to bring frequently used shortcuts for text-heavy activities from
hardware keyboards to fully touch sensitive smartphones. This chapter follows
the UCDDL process as presented in Section 1.2.3.

Stationary computers with hardware keyboard and mouse are recently the
primary device for text editing and thus suitable to study the used shortcuts. Thus,
Study I analyses shortcuts performed by 15 expert users over five workdays in
an in-the-wild study. Subsequent interviews revealed that major challenges for
text-heavy activities on smartphones are limited input precision (e.g., placing
the caret) and the lack of shortcuts. Despite these challenges, users still find
text editing on smartphones essential. As these limitations can be solved by
offering more shortcuts (e.g., for navigating the caret), we conducted Study II to
elicit gestures that provide shortcuts to frequently used functions. We followed
the formal methods proposed by Wobbrock et al. [255] and focus on full-touch
smartphones to avoid conflicts with gesture keyboards. To evaluate the elicited
gesture set and its usability in realistic text editing scenarios, we conducted two
further studies to implement and evaluate the prototype. Thus, in Study III, we
collect a ground truth data set of participants performing the gesture on our fully
touch sensitive smartphone to develop a deep learning model. In Study IV, we then
evaluate the gesture set with realistic text editing scenarios to gather qualitative
feedback on the gestures and their usability.
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6.2 Study I: Shortcuts on Hardware Keyboards

We conducted an in-the-wild study to analyze shortcuts performed on hardware
keyboards by expert users. Specifically, we investigate single and combination
of keys that activate functions, and that are not available on recent smartphone
keyboards, e.g., the standard keyboard on Android and iOS.

6.2.1 Apparatus

We used a low-level system-wide hook for keyboards to log all performed short-
cuts. Based on the Java System Hook library1, we developed an application that
runs in the background to log shortcuts into a text file. Shortcuts include all keys
and key combinations that do not generate a new visible character on the screen,
amongst others key combination that involves the modifier keys (Ctrl, Win, Alt
as well as Shift for non-alphanumeric and non-punctuation keys), cursor keys,
command keys (e.g., Del, and Insert) and function keys (i.e., F1-F12 which
are commonly unavailable on mobile on-screen keyboards). For each shortcut,
we logged the foreground application’s file name (e.g., winword.exe) and the
timestamp. Our application automatically starts when the system boots. All
participants were running our application on their main work computer that runs
Microsoft Windows.

6.2.2 Procedure and Participants

After obtaining the participants’ informed consent, we set up the application on
their main work computer. We briefed them on the collected data and their right
to delete lines out of the log before the end of the study. Our application logged
keyboard shortcuts over five full work days while weekend days and the starting
day were excluded. After five work days, we invited the participants back to our
lab for a copy of their logs and an interview. Specifically, we asked them about
their experiences in text-heavy activities on hardware and touchscreen keyboards,
and perceived advantages and disadvantages of both input modalities. In semi-
structured interviews, participants provided comments orally and summarized
them in written form afterward. This took around 20 minutes per participant.

1Java (low-level) System Hook library: http://github.com/kristian/system-hook/

174 6 | Improving Shortcuts for Text Editing

http://github.com/kristian/system-hook/


We recruited 15 participants (7 female) between the ages of 20 and 34 (M
= 25.5, SD = 4.2). Seven participants were research associates while eight
participants were computer science students at a technical university located in
central Europe. All participants were reportedly using their computer actively
during the study. All participants stated that they write or edit text multiple times
per day on hardware keyboards for tasks such as taking notes, writing reports and
papers, and programming. Moreover, 12 participants stated that they write and
edit text multiple times per day on smartphones to communicate with friends and
family while two participants performed these tasks at least once per day.

6.2.3 Log Analysis: Shortcuts on Hardware Keyboards

We filtered all repetitions of the same shortcut within 1000ms to avoid counting
consecutively performed shortcuts multiple times (e.g., pressing Alt+Tab mul-
tiple times to select the desired window). Moreover, we removed all shortcut
keys that were used only by a single participant to avoid user-specific shortcuts.
After filtering, the data set consisted of 67,943 shortcuts with 96 unique ones.
Each participant performed a total of 787.5 (SD = 900.9) shortcuts per day on
average of which 28.1 (SD = 13.4) were unique. During the five work days,
participants performed shortcuts within 8.8 hours (SD = 3.2) per day on average.
In addition, two researchers independently classified all logged applications into
categories and discussed them afterward. Based on the discussion, we analyzed
shortcuts within the following three categories: word processing which includes
all applications focusing on editing and formatting text; programming which
focus on coding tasks; and system-wide which includes all logged applications
(e.g., system applications, browsers, media player). Figure 6.1 visualizes the
average use of shortcuts over a working day.

When categorizing performed shortcuts by the number of keys, 43.0% were
single-key shortcuts, 52.2% were double-key shortcuts and 4.1% were triple-key
shortcuts. Table 6.1 shows all shortcuts that were performed at least 1% in total
averaged over all participants. To retrieve these results, we first calculated the
percentage for each shortcut per participant and then averaged them over all
participants. Overall, the arrow keys were the most used amongst all shortcut
lengths and application categories followed by clipboard management shortcuts
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Figure 6.1: Average number of shortcuts performed over the days per participant.

(e.g., Ctrl+V) and the window switching shortcut (Alt+TAB). Shortcuts for caret
movement and text selection were more frequently used in word processing
applications than in programming environments and system-wide. In contrast, the
Left and Right keys, as well as shortcuts for undo (Ctrl+Z), pasting (Ctrl+C)
and saving (Ctrl+S) were performed more often in programming environments
than system-wide on average. In general, 19 of the 24 most frequently used
shortcuts benefit text-heavy activities (e.g., navigation, selecting, and clipboard).
Three are widely available in text editors (undo, save, and search) while two are
system-wide shortcuts (switching windows and open file manager).

6.2.4 Interviews: Hardware and Touchscreen Keyboards

We extracted arguments from the participants’ answers and printed them on
paper cards. Two researchers then coded and clustered the comments. We
focused on WORD PROCESSING and PROGRAMMING as two text-heavy activities
and identified two main clusters which address the INPUT and the OUTPUT

aspect. For each cluster, we found advantages and disadvantages for touchscreen
and hardware keyboards. For the WORD PROCESSING task, participants made
46 comments addressing INPUT and 2 about OUTPUT challenges. Similarly,
participants made 77 comments about INPUT and 12 about OUTPUT challenges
for the PROGRAMMING task.
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Word Processing Two participants mentioned that the display size is one major
concern that affects the OUTPUT. Specifically, “the display is too small” (P7)
and thus “lacks display size to fix spelling mistakes while writing messages” (P9).
Regarding the INPUT, participants commented on the lack of haptics (25 com-
ments) and shortcuts (21 comments). The lack of haptic feedback on touchscreen
keyboards caused participants to be reportedly less accurate and thus slower (“the
large keys [on hardware keyboards] allow me to type faster” – P3; “[hardware
keyboards] provide haptic feedback so that I do not have to look at the keyboard
while typing” – P7). Specifically, the lack of haptic feedback makes it difficult
to perform precise operations, such as placing the caret within a text (e.g. “It
is difficult to put the cursor to the desired text position.” – P6; “Choosing the
position is inaccurate.” – P4).

The latter challenge can be solved with shortcuts (e.g., Home, End, and arrow
keys) to counteract the lack of precision. This conforms with statements from P2
who found that “hardware keyboards offer many more options to change the caret
positions” and P12 who found that “hardware keyboards are more precise since it
is easy to switch between words and select whole lines”. Moreover, “[hardware
keyboards] offer a lot of functions like select all, copy, paste, etc” (P3). This
makes text-heavy activities on hardware keyboards more convenient and faster
(“knowing the shortcuts makes [text editing] very fast” – P4) than on recent
mobile devices (“replacing existing text with copied text in Android at the right
position is not really doable” – P2). Shortcuts would circumvent the fat-finger
problem to avoid imprecise selection, and would save time since a long-press to
access the clipboard can be replaced.

The statements indicate that hardware keyboards are superior due to higher
precision and more shortcuts. However, participants also stated that text-heavy
activities on mobile devices are essential. Smartphones are mobile, which enables
users to do a wide range of tasks while on the move. P13 stated that she “[is]
often doing things on the go and [does] not always have access to [her] laptop”
while P11 sees a clear advantage when “[having] to send an email outside of the
office, or to edit a document urgently over Dropbox or Google”. Additionally,
touchscreen keyboards comprise useful features that are not available on their
physical counterpart. This includes auto correction (“with auto correct, I do
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Shortcut Function All Word P. Progr.

Single-Key Shortcuts

DOWN Move cursor down. 10.00 7.47 8.41
RIGHT Move cursor right 8.79 10.20 12.09
LEFT Move cursor left. 7.80 11.45 9.73
UP Move cursor up. 6.56 5.79 5.55
DELETE Delete character ahead. 2.60 4.29 2.44
END Move cursor to end of line. 2.08 3.95 2.24
HOME Move cursor to start of line. 1.17 1.17 1.07

Double-Key Shortcuts

Ctrl+V Paste from clipboard. 9.18 9.90 11.20
Alt+TAB Switch windows. 7.84 4.84 9.63
Ctrl+C Copy to clipboard. 7.64 5.31 6.21
Ctrl+S Save document. 4.82 9.29 13.48
Ctrl+A Select all. 1.68 0.41 0.76
Win+E Launch file manager. 1.61 1.37 0.19
Ctrl+X Cut to clipboard. 1.61 1.66 1.78
Ctrl+F Open Search. 1.05 0.98 0.55
Ctrl+T New Tab. 1.02 0.09 0.03
Ctrl+Z Undo last action. 0.87 0.86 1.53
Shift+HOME Select until start of line. 0.85 0.70 1.85
Shift+RIGHT Select character ahead. 0.72 1.09 0.70
Shift+LEFT Select previous character. 0.63 1.47 0.89
Ctrl+LEFT Move cursor to prev. word. 0.41 1.31 0.21
Ctrl+RIGHT Move cursor to next word. 0.33 1.27 0.11

Triple-Key Shortcuts

Ctrl+Shift+LEFT Select last word. 0.49 1.27 0.86
Ctrl+Shift+RIGHT Select word ahead. 0.41 1.11 0.36

Table 6.1: This table shows the percentage of occurrence of all shortcuts that represent

at least 1% in the logs, averaged over all participants for system-wide, word processing

and programming applications.
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not always need to write the word completely” - P4) and one-handed interaction
which can be useful during secondary tasks (“I find on-screen keyboards easier
than a normal keyboard on a computer because I can type with just one finger on
my phone” - P8).

Programming For PROGRAMMING tasks, we found 12 comments that address
the OUTPUT. Compared to WORD PROCESSING, a “large screen is required
to analyze code in a comfortable way” (P10) since “code is often hundreds of
lines long and can be barely interpreted, even on a normal-sized laptop screen.
Viewing a large amount of text on a small screen would be annoying” (P13). For
challenges regarding INPUT, we found 77 comments that we clustered into three
categories: typing speed, special characters and shortcuts.

Conforming with comments for WORD PROCESSING, the typing speed on
touchscreen keyboards is affected by the small display size (e.g., "I cannot type
as efficiently on an on-screen keyboard as on a hardware keyboard because I
usually type with my two index fingers/thumbs instead of all ten fingers" - P13).
Moreover, special characters can only be accessed through switching layers or
long-presses on most touchscreen keyboards due to the lack of modifier keys.
This makes programming on touchscreens inconvenient since special characters
are often required (“I often need some specific characters which are only available
by long-press” - P7).

Participants predominantly mentioned the lack of shortcuts that make pro-
gramming on hardware keyboards easier and faster (“The use of shortcuts when
using a hardware keyboard make coding tasks much easier and faster” - P3). Spe-
cifically, shortcuts enable to navigate faster through structured code (“functions to
switch between methods (e.g., F3 in Eclipse)” - P2) and text (“Navigating text,
which is often required when programming, is really hard on mobile devices.” -
P7). Moreover, programming environments enable users to create own shortcuts
(e.g., for formatting and renaming) that make programming faster in general (“You
can use a lot of shortcuts and also create your own ones, what results in faster
performance." - P10). Thus, the majority (10 participants) reportedly look up
shortcuts on the internet (e.g. “Looking up through search engines.” - P13) while
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three participants reportedly look for shortcuts in menus. Despite the hardware
keyboard’s superiority, participants still find programming tasks essential in some
situations (e.g. “for emergency bug fixes” - P1).

6.2.5 Discussion

We conducted an in-the-wild study with 15 expert users in which we analyzed the
usage of shortcuts on hardware keyboards. We further interviewed them afterward
about their experiences in text-heavy activities on touchscreen and hardware
keyboards. We found that the participants performed around 800 shortcuts on
average per day and identified 24 unique gestures that they frequently used. Of
these, 22 benefit text-heavy applications and enable one to select text, place the
caret, access the clipboard, and activate helper functions (e.g., save and search).
The majority of shortcuts are double-key shortcuts which are also available in
the application menu. The frequent usage of shortcuts indicates that users prefer
them over buttons and menus in the user interface. This is further supported by
participants who voluntarily look up shortcuts in the internet or try them out based
on the menu description.

Interviews revealed that touchscreen keyboards are inferior to hardware key-
boards due to the lack of precision (e.g., caret placement), shortcuts, and special
characters for programming. Despite the disadvantages, participants highlighted
that text-heavy activities are still essential on smartphones. Smartphones enable
users to perform tasks in mobile situations (e.g., writing emails or doing emer-
gency bug fixes while out of office). This conforms with the prominence of mobile
alternatives of established computer programs (e.g., Word1 and Excel2). Major
challenges of touchscreen keyboards can be addressed by providing shortcuts to
support mobile text editing. While the precision of caret placement can be increa-
sed with shortcuts known from hardware keyboards, shortcuts are necessary to
provide a faster access to functions and special characters. Despite the necessity,
recent touchscreen operating systems and keyboards do not provide shortcuts

1Microsoft Word: https:
//play.google.com/store/apps/details?id=com.microsoft.office.word&hl=en

2Microsoft Excel: https:
//play.google.com/store/apps/details?id=com.microsoft.office.excel&hl=en
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that enable a quick access to these functions. Instead, direct touch makes precise
caret placement and text selection difficult while long presses for accessing the
clipboard slows down the usage.

Solutions based on on-screen gestures are not applicable for a larger number
of shortcuts due to interference with gesture keyboards and ambiguity errors in
recognition. Instead, we propose to extend the gesture input space to the whole
device surface on full-touch smartphones. This extends the gesture input space
which avoids interference and enables different gesture types (e.g. based on hand
grip, pressure, side-dependent gestures) that can be used similar to modifier keys
on hardware keyboards. Since user-defined gestures are easier to perform and
more appropriate than designer-defined gestures [170], we conducted a gesture
elicitation study to derive a gesture set for improving text-heavy activities.

6.3 Study II: Gesture Elicitation

We conducted a study to elicit on-device gestures to provide frequently used shor-
tcuts on full-touch smartphones. We followed the method for gesture elicitation
studies introduced by Wobbrock et al. [255] and used the AGreement Analysis
Toolkit (AGATe) [237, 238] to analyze the collected gestures. The method by
Wobbrock et al. [255] uses a within-subjects design to ask participants for gesture
proposals in a randomized order.

6.3.1 Referents

We derived 22 distinct referents as shown in Table 6.3 based on the frequently used
shortcuts of the previous study. We considered all shortcuts, except application
or system specific shortcuts that are not necessarily required on mobile devices.
This includes the shortcut for application switching (Alt+TAB) for which mobile
platforms already provide their own methods, and the save shortcut (Ctrl+S) for
saving a document which a number of text editors already do automatically. The
referents shown in Table 6.1 represent basic actions that are either related to caret
placement, text selection, clipboard management, or document switching.
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Figure 6.2: Setup for the elicitation study. We used the tablet for camera preview and

the laptop to control the referents on the smartphone.

6.3.2 Apparatus and Procedure

To avoid distracting participants with an unfamiliar prototype or recognizer in
the gesture elicitation process, we followed the concept of a magic brick [204]
capable of detecting any gesture that was performed. Participants tested and
demonstrated their proposed gestures on an off-the-shelf LG Nexus 5. Further,
we used a custom Android application to show the referents using screenshots of
the state before and after the action was performed. Displayed screenshots were
controlled by an application on the experimenter’s computer while input on the
smartphone was disabled to avoid any reactions of the UI. All proposed gestures
were recorded with a GoPro Hero 3 (audio and video) as shown in Figure 6.2.

After obtaining informed consent, we briefed participants on the procedure
and collected demographic data including their experiences in using mobile
devices for text editing. We instructed participants to think-aloud and explain
the thought process as well as the proposed gesture. We briefed participants that
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Dimension Category Description

Nature

physical Gesture acts physically on the object.
symbolic Gesture visually depicts a symbol.
metaphorical Gesture indicates a metaphor.
abstract Gesture-referent mapping is arbitrary.

Flow
discrete Response occurs after the user acts.
continuous Response occurs while the user acts.

Complexity
simple Gesture is atomic.
compound Gesture consists of atomic gestures.

Binding

object-centric Location relative to object features.
caret-centric Location relative to caret features.
mixed dep. Any combination of above bindings.
independent Independent to any features.

Spatial
one-sided Gesture performed on a single side.
multi-sided Gesture performed on multiple sides.

Table 6.2: Taxonomy of gestures for text editing shortcuts on a full-touch smartphone

based on over 400 elicited gestures.

gestures could be performed on the whole device surface with one or two hands.
The order of the referents was randomized. In total, the study took around 45
minutes.

6.3.3 Participants

We recruited 18 participants (5 female) between the ages of 20 and 34 (M =
23.9, SD = 3.5) who were staff or students at a technical university located in
central Europe. None of the participants had participated in the previous study.
All participants were right-handed with an average hand size of 19.1cm (SD =
1.2cm) and used their smartphones multiple times per day. We reimbursed them
with 5 EUR.

6.3.4 Results

Three researchers transcribed each proposed gesture, grouped them in case they
were identical, and assigned them to the taxonomy shown in Table 6.2. Moreover,

6.3 | Study II: Gesture Elicitation 183



Category Referent AR MAR CR

Caret
Positioning

Move Up .523
Move Down .431 .418 .183
Move Left .359
Move Right .359

Move to previous word .183 .245 .111
Move to next word .307

Move to start of line .294 .285 .098
Move to end of line .275

Text
Selection

Select Up .242
Select Down .235 .275 .098
Select Left .379
Select Right .242

Select left word .235 .268 .137
Select right word .301

Select to start of line .196 .219 .065
Select to end of line .242

Select All .137 -

Clipboard
management

Copy .059
Cut .072 .076 .000
Paste .098

Navigation Switch to next document .098 .098 .098
Switch to previous document .098

Table 6.3: Overview of referents. AR represent the agreement score of each gesture

while MAR represents the average agreement score for the respective group. CR
represents the coagreement score.
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we transcribed the think-aloud protocols to analyze the thought process behind
the proposed gestures. In total, participants performed 414 gestures from which
we identified 138 unique gestures.

Taxonomy We classified the transcribed gestures along the dimensions shown
in Table 6.2. We adapted the taxonomy by Wobbrock et al. [255] originally
proposed for touch surfaces and added the dimensions complexity and spatial
while changing the binding dimension to match on-device gestures. This resulted
in five dimensions: nature, temporal, complexity, binding and spatial.

Nature describes the meaning of the gesture. Physical gestures directly
manipulate objects (e.g., dragging the caret) while symbolic gestures depict
an object (e.g., drawing scissors for cut). Metaphorical gestures manipulate
imaginary objects (e.g., tracing a finger in a circle to simulate a scroll ring). We
categorized gestures as abstract if the meaning was arbitrary (e.g., tapping three
times to delete a selected word). Flow describes the visibility of a response;
discrete if response is visible after a gesture was performed and continuous when
response is shown while performing the gesture (e.g., scrolling on the right edge).
The Complexity describes the composition of a gesture; compound if it comprises
of atomic gestures and atomic if not. Binding describes the relation to the referent.
An object-centric gesture refers to an object (e.g., a selected word) and caret-
centric gestures refer to objects relative to the caret (e.g., delete previous word).
Independent gestures do not refer to any object. Spatiality describes whether
gestures are performed on a single side or on multiple sides simultaneously or in
succession.

Categorization of Gestures Figure 6.3 shows the taxonometric breakdown of
the proposed gestures. Nearly half of the total gestures are physical gestures
(44.9%). A large portion of the gestures are discrete (88.3%) and compound
gestures (70.0%), whereas the majority refer to the caret’s position (cursor-centric).
Proposed gestures were performed on one side of the device (one-sided with
57.9%) and on multiple sides (41.7%).

6.3 | Study II: Gesture Elicitation 185



Agreement Analysis We used AGATe by Vatavu and Wobbrock [237, 238] to
calculate the agreement and coagreement rates. The agreement rate AR describes
the participants’ consensus on the proposed gestures while the coagreement
rate CR represents the agreement shared between two referents r1 and r2. The
scores range between 0 and 1, whereas 1 represents the highest agreement. The
overall agreement rate for the elicited gesture set is AR = .236. We report the
AR and CR for each referent in Table 6.3. We found a significant effect of
referent type on agreement rate (Vrd(22,N=414) = 314.798, p < .001). Agreement
rates for caret positioning referents are higher than the average with an AR
of .359. We found a significant effect in this category (Vrd(7,N=144) = 63.794,
p < .001). The agreement of text selection referents is AR= .214 on average
with a significant effect within the category (Vrd(8,N=162) = 33.122, p < .001).
In contrast, the clipboard management category yielded a lower AR of .076 on
average, while we found no significant agreement for all referents in this category
(Vrd(2,N=54) = 2.074, p = 1.000). The group for moving the cursor yields the
highest coagreement score with CR= .183.
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Figure 6.3: Distribution of gestures in taxonomy categories as shown in Table 6.2.
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(l) Copy Text (m) Cut Text (n) Paste Text

2x

(o) Previous Tab (p) Next Tab

Figure 6.4: The gesture set to provide shortcuts for word processing and programming

activities. Shortcuts are performed on a smartphone that is capable of sensing touch

input on the whole device surface. Gestures for moving and selecting the caret are

summarized into one Figure for all directions.
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Mental Model Observations All participants aimed to propose gestures that
were consistent with each other. Consistency as an explanation was given for
12.6% of the proposed gestures whereas each participant mentioned it 5.1 times
on average. We observed that participants tried to recall which gesture they had
proposed for a similar referent and even asked which gesture they had used before.
This was especially the case for gestures in the caret positioning and text selection
category. Six participants (P2, P3, P6, P9, P12, P14) tried to propose gestures that
could be easily performed, especially when holding the device one-handed ("[..]
easy to do because index finger is already there" - P2). Further, participants also
explained that gestures were proposed to avoid unintended activations (e.g. "more
complex than just swiping so it doesn’t happen accidentally" - P1).

While the concept of on-device gestures was new to our participants, they (P1–
P3, P6, P7, P10, P14, P17) proposed gestures based on their previous technical
experiences. For example, holding different positions on the rear was compared
with modifier keys from hardware keyboards ("Pinkie and Ring, are like Ctrl
and shift" - P7, "[..] holding like Ctrl button" - P17). Further, we observed that
participants changed the gesture they had in mind if they could not perform it
with a sufficiently stable grip.

6.3.5 Gesture Set for Shortcuts in Text-Heavy Activities

The gesture set shown in Figure 6.4 consists of gestures with the highest agreement
rate for each referent. Moving the caret can be done with the index finger on
the back to avoid occlusion issues (see Figure 6.4a). Participants envisioned the
caret to move relative to the finger and suggested a movement threshold to avoid
unintended movements during grip changes. Inspired by hardware keyboards,
text selection can be done analogously to caret movement using the thumb as a
modifier (c.f. Ctrl and arrow keys, see Figures 6.4f to 6.4j). Moving the caret
word-wise can be done by swiping the form of an arc to the respective direction
(see Figures 6.4d and 6.4e). Participants explained this as a metaphorical leap
over the previous/next word. Placing the caret at the start/end of the current line
can be done with a double tap on the left/right side (see Figures 6.4g and 6.4h).

Selecting the whole text can be done with four taps on the front, while
selected text can be copied by drawing the letter C on the back of the device
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(see Figure 6.4l). This refers to the shortcut on hardware keyboards (Ctrl+C).
Participants cut text into the clipboard by swiping down two fingers on the rear
(see Figure 6.4m) symbolizing a scissor, and pasting text using a double tap
followed by a swipe down on the rear (see Figure 6.4n). To switch between
tabs, participants proposed swiping left and right on the bottom edge which can
be done with the little finger when used one-handed, and the thumb when used
two-handed. Similar to the caret placement, the tab should not be switched before
the swipe is performed for a minimum distance to avoid unintentional switches.

6.3.6 Discussion

We conducted two studies to derive a gesture set that brings frequently used
shortcuts from hardware keyboards to full-touch smartphones. Figure 6.4 shows
the gesture set that we discuss in the following. The gesture set achieves an
overall agreement rate of .236 which is in line with gesture sets elicited in other
domains [13, 234]. The agreement scores for caret positioning and text selection
are higher than the average which could be due to the simplicity of the action
that can be projected to a physical gesture (e.g., dragging the caret). In contrast,
clipboard management, and tab navigation have lower agreement scores. This
could be due to the abstractness of referents such as copying and cutting text that
have no physical relations. Mobile operating systems often provide these functions
through abstract buttons or pop-ups. Therefore, participants expressed these
functions through symbolic gestures representing hardware keyboard shortcuts
(e.g., Ctrl+C), or real-world objects such as scissors to cut, and convenient
combinations of abstract taps and swipes.

While participants assumed that the device is capable of detecting any per-
formed gesture [204], recognizing the gesture set on a full-touch smartphone
would comprise unintended activations, e.g., through grip changes. Participants
considered this challenge and proposed compound gestures (e.g., tap then swipe)
to counteract unintended activations. Moreover, the majority of the gestures are
discrete so that the effect of activation is only shown after the gesture is fully
performed. Thus, a series of distinct movements is required which makes unin-
tended activations less likely. For continuous gestures (e.g., moving the caret),
participants proposed to use movement thresholds to discriminate unintended
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movements (e.g., grip change) from intended movements. For example, the index
finger on the back needs to move a minimum distance before the caret moves.
Moreover, unintended activations could be further decreased by only accepting
gestures when the expected number of fingers is moved (e.g., only the index finger
is moving to position the caret).

6.4 Study III: Implementing the Gesture Set on a

Full-Touch Smartphone

We implemented the elicited gesture set on our full-touch smartphone prototype
which we presented in Section 5.1. We follow a similar approach based on deep
learning as already shown in Chapter 4. First, we invited a set of new participants
which we instructed to perform our gesture set on our full-touch smartphone.
Second, we use the collected data set to train a Long short-term memory (LSTM)
model which recognizes the gestures. In the following, we describe the study,
model training and validation, as well as our mobile implementation.

We conducted a user study to collect a series of capacitive images for each
gesture shown in Figure 6.4.

6.4.1 Apparatus

Based on the fully touch sensitive smartphone (FTSP) presented in Section 5.1, we
collected capacitive images at 20 fps with a resolution of 28×32 px. Participants
were seated on a chair without armrests in front of a display. The display shows
instructions to the participant including the gesture to perform. Moreover, partici-
pants rated the gestures using a mouse after performing them on the full-touch
smartphone.

6.4.2 Participants

We recruited 28 participants (21 male, 7 female) between the ages of 20 and 29
(M = 23.7, SD = 3.4) which did not participate in the previous studies. Two parti-
cipants were left-handed, 26 right-handed. The average hand size was measured
from the wrist crease to the middle fingertip and ranged from 16.0cm to 25.0cm
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(M = 19.3cm, SD = 1.6cm). With this, our set of participants include samples
of the 5th and 95th percentile of the anthropometric data reported in previous
work [191]. Thus, the sample can be considered as representative. Participants
were reimbursed with 10 EUR for their participation.

6.4.3 Procedure and Study Design

After obtaining informed consent, we asked participants to fill out a demographics
questionnaire and measured their hand size. We then briefed them about the
smartphone prototype and the purpose of the study. The study consists of six
phases in which each of the gesture has to be performed by the participant. Using
a custom application, the experimenter started and stopped the recording while
instructing participants when to perform the gesture.

In the first phase, the experimenter instructed participants to perform the
gesture as shown on the display in front of them. In case it was unclear, the
experimenter further demonstrated the gesture on another smartphone. Before
starting the recording of the respective gesture, participants were asked to perform
the gesture on trial to ensure that everything was understood. In the second phase,
we explained participants the function of each gesture before they were recorded.
The display in front of them shows the function name while the smartphone shows
exemplary before and after states of a text editor. Moreover, the experimenter
explained each gesture orally and provided examples in case participants did not
fully understand the function. After everything was understood, participants were
asked to perform the gesture as if they are currently doing text editing tasks.

In the remaining four phases, we instructed participants to perform the gesture
as shown on the display while the smartphone showed exemplary before and after
states. These phases are used for collecting more data from the participants. In
total, participants performed each gesture 6 times which results in 28×6 = 168
samples per gesture per participant.

6.4.4 Modeling

We describe the preprocessing and training steps which we performed to train a
model for gesture recognition.
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Data Set & Pre-Processing

We collected 477,605 capacitive images in total throughout the study. Our prepro-
cessing steps includes synchronizing the capacitive images from all sides, cleaning
the data set, and preparing the samples for an LSTM model. We performed the
following four data preprocessing steps:

1. Matching capacitive images from all sides: Based on the timestamps of
the capacitive images, we merged the capacitive images of all sides into a
combined one with a size of 32×28 px. To reduce the processor workload
of a mobile deployment (i.e. the average number of capacitive images
within one gesture), we merged on the front image and omitted all changes
of the side sensors which happened between two capacitive images.

2. Data Set Cleaning: For each recorded gesture, we removed all frames in
which no movements were happening (i.e. frames in which the participant
only held the device to wait for the next task). This was done by determining
blobs in the capacitive image and an element-wise equal operation1 within
a tolerance of 4.1mm (equals to the size of a pixel in the capacitive image).
We further removed all gestures from our data set which did not include
any movements to avoid errors during training.

3. Summarizing Gestures: Since the input on the front touchscreen is limited
to either a thumb placement as a modifier (i.e. switching from moving
cursor gestures to selecting gestures) or the 4x tap gesture for the select all
action, we omitted the front data and summarized the gestures accordingly
based on their back and side data. In particular, we summarized gestures
(a-e) with (f-j) into the five respective classes and differentiate between
selection and movement during run time based on the touch API from
Android (i.e. whether a touch is registered on the front or not). Moreover,
we removed the gestures b, c, g, and h since a simple double tap on the
sides can be easily recognized manually. We ended up with 12 classes with
the resulting capacitive images being 17×28 px.

1We used numpy’s allclose operation: abs(a-b) <= (atol + rtol * abs(b))
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Figure 6.5: An illustration of the architecture of our CNN-LSTM model which we used

to classify gestures on the full-touch smartphone. The first four layers are convolution

layers wrapped in a TimeDistributed layer whose output is then fed into two

subsequent LSTM layers with 100 units each. The output are 12 values representing

the probabilities for each gesture class.

4. Preparing samples for LSTM training: Since LSTM models require a fixed
input size (i.e. equal number of timesteps per gesture), we padded and
trimmed gestures respectively to a sample size of 20 based on the average
length of a gesture in our data set (M = 16.04, SD = 5.7).

In total, our data set consists of 114,720 capacitive images.

Model Architecture & Training

To train the model, we used a participant-wise split of 80%:20% for training
and testing, i.e., we trained the model on data from 22 participants and tested
the model on the remaining 6 participants. We did not use a validation set as we
evaluate the validation accuracy in the next study described in Section 6.5.

We implemented a CNN-LSTM [49, 57] using Keras 2.1.3 based on the Ten-
sorFlow backend. While we experimented with convolutional LSTMs [267, 281]
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(a fully connected LSTM with convolutional input and recurrent transformations)
in Keras1 and stateful LSTMs with continuous capacitive image input, we found
that a CNN-LSTM leads to the highest classification accuracy. We performed a
grid search as proposed by Hsu et al. [101] to determine the most suitable network
architecture and hyperparameters. If we do not report a hyperparameter in the
following, we applied the standard value (e.g., optimizer settings) as reported in
Keras’ documentation.

The architecture of our final CNN-LSTM is shown in Figure 6.5. We adapted
the convolution layers of our InfiniTouch model (see Section 5.1) and used a
TimeDistributed2 layer to attach it to the LSTM part; a grid search focusing
on the number of filters and kernel size in the convolution layer does not show
any improvements in accuracy. After a further grid search on the LSTM part,
we found that 100 LSTM units and a dropout factor of 0.7 achieved the highest
accuracy. With this model, we further experimented with different number of
timesteps (i.e. capacitive images) per gesture by increasing/decreasing them in
steps of 5. We found that a window size of 20 (four more than the average)
yielded the highest performance.

Similar to Section 5.1, we trained the CNN-LSTM with an RMSprop optimi-
zer [229] but with a batch size of 16. Further, we determined .001 to be the most
suitable initial learning rate after testing in steps of negative powers of 10. We
experimented with batch normalization [103] and L2 Regularization, but did not
find any improvements in the overall performance in our experiments.

Model Accuracy

Based on the test set, our model identifies the 12 gesture classes with an accuracy
of 80.92%, precision of 79.32%, and recall of 78.28%. Figure 6.8 shows the
confusion matrix.

1Convolutional LSTMs are provided as ConvLSTM2D in Keras:
https://keras.io/layers/recurrent/#ConvLSTM2D

2TimeDistributed layer in Keras:
https://keras.io/layers/wrappers/#TimeDistributed
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Figure 6.6: Confusion matrix of the CNN-LSTM for identifying 12 gesture classes with

an accuracy of 80.92%. The values shown in the figure represent the accuracy in

percent (%). The x-axis represents the predicted class while the y-axis represents the

actual class.

6.4.5 Mobile Implementation

We used TensorFlow Mobile1 for Android on the processing unit responsible for
the front display to run the CNN that estimates the fingertip positions. Capacitive
images from the back side and the edges are sent to the front device that merges the
data into an input matrix. The input consists of a 17×28 8-bit image representing
the front, back, and edges as shown in Section 5.1. A model inference for
one capacitive image takes 163.7ms on average (SD = 34.4ms, min = 101ms,
max = 252ms) over 1000 runs on our prototype. While we exported the model
without any modifications, the inference time can be reduced significantly with
optimization techniques such as quantization [78] and pruning [7] for a small loss
of accuracy, or using recent processors which are optimized for neural networks2

(e.g., Snapdragon 845).

1TensorFlow Mobile website: www.tensorflow.org/mobile/
2www.qualcomm.com/snapdragon/artificial-intelligence
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Figure 6.7: This figure shows the apparatus of the study. A participant holds our

smartphone prototype to edit a text based on instructions shown on the screen in front

of the participant.

6.5 Study IV: Evaluation of Shortcut Gestures

We conducted a user study in which we (i) validate the model accuracy with a new
set of participants which were not involved in the model development process, (ii)
collect qualitative feedback about our gesture set in a Wizard-of-Oz setting which
excludes the effect of potential recognition errors, and (iii) collect qualitative
feedback about the perceived usability of our prototype including the gesture
recognizer, full-touch smartphone, and the text editing functions.

6.5.1 Study Procedure and Design

We designed three tasks to evaluate the three aspects described above. Prior to the
study, we obtained informed consent, measured the participants’ hand sizes, and
handed them an instruction sheet which explains all parts of the study. Participants
could refer to the instruction sheet at any time during the study.
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Part 1: Accuracy Validation and Introduction of Gestures

This part is similar to the data collection study as described in Section 6.4. The
focus is on obtaining a validation set with new participants while introducing
and explaining the shortcuts for the next parts of the study. The experimenter
explained each gesture to the participant using an image of the gesture displayed
on the screen in front of the participant (see Figure 6.7), and by demonstrating it
on another smartphone. Moreover, the experimenter explains the function of the
gesture which is supported by an exemplary before and after state image shown
on the full-touch smartphone.

Part 2: Wizard-of-Oz Evaluation of the Gesture Set

Based on a Wizard-of-Oz implementation of our gesture recognizer, we instructed
participants to perform a set of pre-defined text editing tasks in our application.
This part uses a Wizard-of-Oz implementation to avoid influencing participants
with potentially wrong recognitions of our model. Using a 2×3 within-subjects
design, we compare accessing functions for caret movement, text selection, and
clipboard management of Android’s recent methods (STANDARD) with our gesture
set (GESTURE). As different font sizes affect the input precision, we used three
font sizes from previous work by Fuccella et al. [61] to compare the two input
methods: 1.75mm, 3.25mm, 4.75mm. The conditions were counterbalanced with
a Latin square and used six different texts to avoid learning effects.

Participants performed a set of text editing operations which were pre-ordered
and described on the screen in front of the participant. Due to the fixed order, a
trained experimenter could carefully observe the performed input of the partici-
pant to trigger the respective action using a Wizard-of-Oz controller on another
smartphone. With the STANDARD method, the cursor can be moved by touching
at the desired location. Text selection works similar with a long-press prior to the
selection which also displays the clipboard functions in a menu on the top menu
in the taskbar (i.e. ActionBar).
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After each condition, we collected qualitative feedback in the form of a SUS,
and the 7-point Likert scale questions as used in Section 3.3.6 and Section 4.2.3.
At the end of this part, we further conducted a semi-structured interview in which
we focused on comparing the conditions.

Part 3: Gesture Set Evaluation based on the Model

This part focuses on collecting qualitative feedback on the perceived usability
of our gesture classifier for a new text with a font size of 3.25mm. Similar to
the previous step, participants were given a set of text editing operations which
they performed based on our gesture set. After finishing the task, we conducted
a semi-structured interview in which we focus on the perceived usability and
usefulness of our gesture set for text editing tasks.

6.5.2 Apparatus

We developed a custom text editor application which provides the required functi-
ons for caret movement, selection, and clipboard management. For the use case
evaluations, we included seven simple texts (six for the second part; one for the
third part) from an English learning website1 which are editable with an on-screen
keyboard, as well as shortcut gestures or Android’s standard text editing methods.
The shortcuts can be activated either with a remote Android application on another
smartphone (Wizard-of-Oz controller for Part 2), or by performing the shortcut
gestures on the FTSP (Part 3). The Android application deployed on the back unit
performs the gesture classification based on its own and the capacitive images
from the sides and sends the classification result to the text editor application on
the front unit.

Since gestures which require a thumb placement on the front touchscreen
would recently interfere with the long-press mechanism of most Android keybo-
ards (e.g., punctuation marks on the built-in keyboard or GBoard), we developed
our custom keyboard which detects long-presses and uses them to differentiate be-

1https://www.newsinlevels.com/
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tween caret movement gestures (no thumb) and selection gestures (thumb on the
front) instead of for inserting punctuation marks. The keyboard further changes
its background color to indicate the selection mode.

6.5.3 Participants

We recruited 12 participants (6 female, 6 male) between the ages of 17 and 25
(M = 21.1, SD = 2.7). These participants did neither participate in Study II nor
in Study III. All participants were right-handed (one was ambidextrous) and
reportedly use mobile touch-based devices multiple times per day. Participants
were reimbursed with a credit point for their lecture.

6.5.4 Results

We present the results of each part of the user study. The validation accuracy,
as well as the ratings on easiness and suitability, are a result of the first part.
Subjective ratings and the feedback gathered in the semi-structured interview
are collected after the second part. The implementation which we evaluated in
the third part was evaluated with semi-structured interviews and a questionnaire
focusing on whether the participants would prefer our implementation or the
recent text editing features integrated into Android. In total, the results describe
the usefulness and usability of the gesture set, its use cases, and our prototypical
implementation.

Validation Accuracy

Based on the capacitive images of gestures performed by the new set of parti-
cipants, our model achieved a mean accuracy of 79.19% (SD = 8.21%, min =
63.64%, max = 89.66%). The mean precision is 80.88% (SD = 8.27%, min =
62.22%, max = 95.0%) while the recall is 77.67% (SD = 7.05%, min = 62.5%,
max = 88.89%). The confusion matrix for this validation is shown in Figure 6.8.

Easiness and suitability of each gesture

Adapting the approach from previous work by Wobbrock et al. [255], we asked
participants to rate the ease (i.e., the gesture is easy to perform) and goodness
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Figure 6.8: Confusion matrix describing the validation accuracy of the CNN-LSTM

presented in Section 6.4.4. The values represent the accuracy in percent (%). The

x-axis represents the predicted class while the y-axis represents the actual class.

(i.e., the gesture is a good match for its intended purpose) of each gesture and its
assigned function on a 7-point Likert scale. The results are shown in Figure 6.9.
The average rating for ease is 5.84 (SD = .91, min = 3.31, max = 7.0), while the
average goodness was rated at 6.06 (SD = .57, min = 4.77, max = 6.85).

Subjective Ratings

For each of the four gesture categories (i.e. placing, selecting, clipboard access,
and tab switching), we collected subjective ratings in the form of 7-point Likert
scale questions and semi-structured interviews. These are used to compare text
editing using our gesture set with text editing operations as implemented in recent
Android systems. Figure 6.10 shows the results. For each gesture category, we
conducted two-way ANOVAs on the five ratings on which we applied the Aligned
Rank Transform (ART) procedure using the ARTool [259] to align and rank the
data.
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(a) Ease rating (“The gesture is easy to perform”).
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(b) Goodness rating (“The gesture is a good match for its intended purpose”).
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Figure 6.9: Participants’ ratings on a 7-point Likert scale for the (a) easiness and (b)

goodness of each gesture.
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Variable Easiness Speed Comfort Suitability Effort

F p F p F p F p F p

SIZE 13.6 < .001 7.0 .002 6.6 .003 2.0 .147 5.6 .006
METHOD 62.9 < .001 3.4 < .001 32.4 < .001 1.4 .248 33.0 < .001
S×M 13.2 < .001 2.0 .1517 2.3 .138 .7 .522 3.8 .027

SIZE 4.9 .01 1.3 .28 2.2 .127 .9 .40 1.4 .246
METHOD 18.0 < .001 9.0 .004 4.7 .035 8.9 .004 14.5 < .001
S×M 6.5 < .001 1.6 .214 3.8 .027 1.2 .322 2.8 .07

SIZE .3 .757 .1 .939 .2 .785 .1 .938 .1 .937
METHOD 14.2 < .001 2.1 .155 2.7 .105 4.6 .035 3.0 .087
S×M 1.1 .331 .7 .506 .2 .813 1.2 .318 .3 .764

SIZE 1.1 .327 .9 .413 1.1 .333 .4 .655 .4 .656
METHOD 189.9 < .001 167.2 < .001 189.2 < .001 111.1 < .001 174.0 < .001
S×M 1.8 .186 .3 .711 .8 .472 .1 .883 1.6 .217

Table 6.4: Results of the two-way ANOVAs for each gesture class and property. The

row blocks refer to the gesture classes, from top to bottom: caret placement, text

selection, clipboard management, tab switching. S × M refer to the two-way interaction

effect between SIZE × METHOD.

For the caret placing gestures, we found significant main effects for SIZE and
METHOD for the properties easiness, speed, comfort, and effort (p < .01) while
we found a significant two-way interaction effect between SIZE × METHOD for
the properties easiness and effort (p < .05). For the text selecting gestures, we
found significant main effects for SIZE for the easiness property (p = .01), for
METHOD for all properties (p < .01), and a significant two-way interaction effect
between SIZE × METHOD for the properties easiness and comfort (p < .05). For
the clipboard access gestures, we found significant main effects for METHOD for
the properties easiness and suitability (p < .05). For the tab switching gestures,
we found significant main effects for METHOD for all properties (p < .001). The
tests did not reveal any other significant effects besides the ones described above.
Table 6.4 provides an overview of all F and p values of the two-way ANOVA tests
while Figure 6.10 shows the rating means and standard deviations.

Semi-Structured Interviews

We interviewed the participants after they performed the text editing tasks with our
gesture set and Android’s standard text editing mechanisms. Two researchers em-
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Figure 6.10: Subjective ratings after editing a text with standard touch input and our

BoD gestures.
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ployed a simplified version of qualitative coding with affinity diagramming [79]
to analyze the results. This includes transcribing the interviews, extracting the ar-
guments from the participants’ answers, printing them on paper cards, and finally
clustering the answers. In the following, we first present general impressions
of text editing with gestures (including advantages, disadvantages, and neutral
comments) and then present the feedback for each gesture group separately.

General Impressions When asked about the first impression of our text editing
gestures, participants made 34 positive, 15 neutral, and 7 negative comments.
All participants mentioned at least one positive aspect for text editing with our
gestures. In particular, participants preferred our gestures over Android’s standard
text editing mechanisms due to the following reasons. Firstly, participants prefer-
red the gestures to improve the usability and input pace with fingers on the back
which were previously unused (“I really like the idea, since we have many unused
fingers on the back” - P13; “Some gestures improve the speed of use, especially if
the user gets used to it” - P11). Further, participants recognized that BoD gestures
improve the input precision. Amongst others, P8 found that “[BoD gestures]
makes placing the cursor much easier” and “more precise” (P2) which “is much
better especially for people with fat fingers” (P12). While participants mentioned
that the usability of Android’s standard text editing mechanisms highly depends
on the text size (“the smaller the text is, the more you had to fiddle around” - P12;
“if the text is very large, the normal version worked fine” - P5), the usability of the
our gesture set is independent from sizes of text, fingers, and hands (“For me, the
gestures were better for all text sizes” - P4, “an advantage is that, independent
from the size of the hand and fingers, you can work with it relatively well” - P10).

Participants also made comments which are positive but includes minor con-
cerns. In particular, participants “found some of the gestures difficult [to perform]”
(P3), however, “normal touch is still [perceived as] worse” (P3). Since some
gestures were perceived as difficult (e.g., “I found the gesture for tab switching
intuitive, but it was difficult to perform” - P9), participants envisioned that they
“would use a mixture of both methods for text editing” (P5, P8, P12). Regarding the
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FTSP prototype, participants also found that “the glass [of the back touchscreen]
induces friction” (P7) which makes performing gestures uncomfortable. However,
this can be readily improved in a market-ready version.

Negative comments focus on the extended input space and indicate two
challenges which concerned the participants. Firstly, they assumed that devices
could become more expensive and fragile due to the additional touch sensors
(“the device could become much more complex with more sensors which could
break” - P13). Secondly, regarding the ergonomics, participants assumed that
disadvantages include that more fingers need to be moved (“[the user] needs
all five fingers” - P1; “I need to move my fingers a lot” - P6) and grip stability
challenges for users which already have trouble holding a device in a single-
handed grip (“with small hands, some gestures are difficult to enter while holding
the device” - P10).

Impressions on Cursor Placing Gestures When asked about impressions on
the cursor placing gestures, we received 10 positive, one neutral and one negative
comment. All except P7 and P11 provided positive comments which describe the
placing gestures as “intuitive” (P9), “(very) helpful” (P5, P8), and well working
(P1, P2, P3, P4, P6, P9, P10, P12). P12 explained that “the gestures on the back
are much better, because [she] often moves the cursor beyond the target with
normal touch because of [her] fat finger]”. In contrast to placing the cursor
with direct touch (which is affected by the fat-finger problem), P5 and P9 found
that “[the gestures] work independently from the text size” due to the indirect
placement.

Participants further discussed the perceived effect of text size and explained
that the standard text editing mechanisms are only usable for large font sizes while
gestures are usable for all sizes (“I found the standard method indeed not that bad
when the text was large. However, for the smaller font, it became obvious that the
gesture method is by far the more comfortable and faster method because placing
the cursor with the finger [on the front display] is grisly.” - P1). P7 confirms this
and envisioned that “[he] would sometimes combine it with the standard methods”
- P7). Only one participant “[..] did not think that [he] is much better with the
gestures than with the normal methods” (P11).
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Impressions on Text Selection Gestures Ten participants were positive towards
the text selection gestures while two provided negative feedback. The majority
of the participants found the text selection gestures “intuitive” (P12), “helpful”
(P5, P8), “very good” (P6) and “quick” (P1, P2, P11). In general, participants
“found it great that a whole word can be selected with a quick gesture” (P11).
Two participants (P3, P13) found the text selection gestures difficult to perform
as holding with the thumb while performing rear input is uncommon for them.

Impression on the Clipboard Gestures Eight participants provided positive,
two neutral, and two negative comments on the clipboard gestures. In general,
participants found the clipboard gesture “very good” (P6), “easy” (P10), “optimal”
(P4), and “really fast compared to the normal touch version” (P1, P4, P12). P5
found the gesture fun to perform, “especially since the cutting gesture feels like
a claw”. While P2 and P3 were neutral towards the clipboard gestures, P2 felt
that “it was not very different to normal touch” and P3 felt that “[she] does not
need the cut feature that often”. In terms of negative feedback, P11 found that “it
is sometimes difficult to move two fingers on the back” while P7 “finds buttons a
little bit easier since [he] can just tap them instead of drawing a gesture”.

Impression on the Tab Switching Gestures Two participants were positive to-
wards the tab switching gestures while ten provided negative comments. While
P5 and P2 found tab switching “intuitive” and “fine”, other participants reportedly
commented that “they would rather switch tabs with the [standard method]” (P3,
P4, P8, P5, P7, P12) especially since “the gestures were difficult to perform” (P4,
P9). P4 and P5 thus suggested to place the tab switching gestures on the “side
close to the volume buttons” (P4) and “the top side” (P5).

Feedback on the Implementation

We asked participants about their impressions after using our implementation
of the text editing gestures. Four participants commended the implementation
since they did not encounter any unexpected results which affected their perceived
usability (e.g., “the recognition rate was fine!” - P3; “I completed all tasks and it
worked fine” - P4). The eight remaining participants also completed their tasks
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successfully, but some gestures did not work well for them. For example, P7
found that “placing the cursor and other [operation such as text selection and
clipboard] worked fine, but gestures on the bottom side [for tab switching] did
not work well for me”. This conforms with comments by P1, P2, P3, P5, and P12.
P10 further mentioned a situation in which the cursor unexpectedly moved to
the beginning of the line (“most gestures worked quite well, but I unintentionally
jumped to the beginning of the sentence once because I moved my hand”).

6.5.5 Discussion

We conducted an evaluation study in which we focused on three aspects: (i)
validating the model accuracy with a new set of participants which were not in-
volved in the data collection, (ii) collecting feedback on the gesture set, including
ease and goodness as proposed by Wobbrock et al. [255] as well as qualitative
feedback based on an evaluation within a realistic scenario, and (iii) collecting
qualitative feedback on the usability of a prototype of the implemented gestures.

Model Validation

The model validation resulted in an accuracy which is close to the test accuracy
in the development phase (79.19% validation vs. 80.92% test for 12 classes).
Thus, we can assume that our model did not overfit to the participants of the data
collection study. In general, these results indicate that BoD gestures on fully touch
sensitive smartphones are feasible with a usable accuracy. While our prototype
provided capacitive images with a resolution of 4.1mm×4.1mm per pixel which
is common for mutual capacitive touchscreens, we expect the accuracy to further
improve with a higher resolution based on sensing techniques such as FTIR [77]
and IR sensing in the LCD layer (e.g. Samsung SUR40).

Feedback on the Gesture Set

The rated goodness and ease of all gestures (except the tab switching gestures) are
in the positive range and in line with previous work [13, 234, 255]. This indicates
that participants found the gestures easy to perform on our smartphone prototype
and that they match their intended purpose.
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We further evaluated the gesture set in realistic text editing scenarios and
compared it with Android’s standard text editing mechanisms. Participants rated
the perceived easiness, speed, comfort, suitability, and effort after each condition.
We adapted these properties from studies presented in Section 3.3 and Section 4.2.
The results revealed that the caret placing, text selection, and clipboard access
gestures are generally rated higher than their standard text editing counterparts.
This conforms with the results from the interviews in which the majority of
the participants preferred the gestures. Participants further mentioned in the
interviews that the usability of the standard text editing mechanisms decreases
with smaller font sizes while the gestures’ usability stays consistent for all font
sizes. This is also visible in the ratings (Figure 6.10). The tab switching gestures
were generally rated as worse than simply touching a tab to switch. In summary,
these results show that on-device gestures to activate text editing operations is
feasible with a usable accuracy while perceived as more usable than the standard
text editing operations implemented in recent touch-based operating systems.

Feedback on the Prototype Implementation

We asked participants for feedback on our prototypical implementation of the
gesture set after they used them in another text editing scenario. All participants
successfully completed the text editing task using our implementation. While
four participants did not activate any function unintentionally, the remaining eight
participants encountered unexpected cursor movements due to recognition errors.
The interviews and observations of the experimenter revealed that recognition
errors are a result of hand grip changes, performing a gesture in a way which does
not conform to the data collection study (e.g., different types of executions for
the tab switching gestures due to ergonomic constraints), and the similarity of a
number of gestures (e.g., swiping down vs. double-tap and then swiping down)
due to the low frame rate of the touch sensor. In summary, the feedback showed
that our prototype already enables the use of on-device gestures as shortcuts to
text editing operations with a usable accuracy and noticeable improvements over
the standard text editing mechanisms.
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6.6 General Discussion

We presented four studies focusing on bringing shortcuts for text editing from
hardware keyboards to mobile devices. Each study represents a step in the
UCDDL process presented in Section 1.2.3.

6.6.1 Summary

This chapter addresses RQ6 which focuses on the design and development of
text editing shortcuts for fully touch sensitive smartphones. We first conducted
an in-the-wild study to collect data about shortcuts which expert users perform
during their work days. Based on the results, we derived a set of frequently used
shortcuts. In the second study, we followed the approach by Wobbrock et al. [237,
238, 255] to elicit on-device gestures to provide text editing shortcuts for fully
touch sensitive smartphone. The results are thus 23 user-defined gestures.

The remaining two studies focused on evaluating the gesture set based on
metrics presented in previous work and on realistic text editing scenarios. We
evaluate the gestures using a Wizard-of-Oz implementation as well as a prototype
implementation based on the fully touch sensitive smartphone as presented in
Section 5.1. Since the prototype is based on a functional gesture recognizer, we
first collect a ground truth data set in the third study. After training a gesture re-
cognizer, we then conduct the fourth study which focuses on gathering qualitative
feedback on the gestures, their usability in realistic text editing scenarios, as well
as the gesture recognizer performance to assess the feasibility of such gestures.

In summary, this set of studies revealed that on-device gestures for text editing
were perceived as useful with a higher usability than state-of-the-art text editing
mechanisms on recent operating systems. This chapter contributes with a set of
frequently used shortcuts for hardware keyboards, the respective user-defined
gesture set for fully touch sensitive smartphones, as well as a working and
evaluated gesture recognizer. While this is a first milestone towards providing
shortcuts for mobile text editing, future work could investigate whether mobile
text editing requires further or other types of frequently used functions compared
to hardware keyboards. This helps to refine our gesture set especially with a focus
on the attributes of mobile devices, such as a rather small display.
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6.6.2 Lessons Learned

Based on the results of our shortcut analysis, gesture elicitation, as well as the
prototype development and evaluation, we derived the following insights:

Expert users leverage shortcuts to be more efficient in text editing. While
text editing shortcuts are not widely adopted yet on mobile devices, expert
users leverage shortcuts on hardware keyboards to speed up operations such
as cursor navigation, text selection, managing the clipboard, or navigating
through documents by switching tabs. Our results showed that experts
perform around 800 shortcuts on keyboards of which 24 are unique. Of
these, 22 benefit text-heavy applications.

Despite the limitations of mobile text editing, it is still needed. Our partici-
pants preferred text editing on computers based on a hardware keyboard
over touch-based text editing on mobile devices. While this is due to the
limitations of text editing functionalities and shortcuts, participants still
emphasized that text editing on mobile devices is still needed and useful.
Example use cases include writing emails, editing text documents, or doing
emergency bug fixes while on the move.

Gestures should be simple but consider unintended inputs. We elicited on-
device gestures to provide text editing shortcuts on fully touch sensitive
smartphones. Analyzing the mental model of the participants, we found
that they suggested gestures which are simple enough but still consider
unintended activations by using compound gestures for functions which
are more difficult to recover (e.g., double tap and swipe down for paste).

On-device gestures are feasible with a usable accuracy. With our prototype
and the gathered qualitative feedback, we showed that gestures performed
on the device surface is feasible with a usable accuracy of around 80%.
This is made possible with a data-driven approach in which we first collect
a ground truth data set of performed gestures, and then train a deep learning
model to recognize these.
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7
Conclusion and Future Work

Touchscreens are the main interface of mobile devices. While they enable intuitive
interaction on handheld devices, their limited input capabilities slow down the
interaction and pose a number of challenges which affect the usability.

In this thesis, we explored the concept of hand-and-finger-awareness for
mobile touch interaction. This concept describes the use of multiple fingers
for touch interaction, and the identification of these fingers to extend the input
vocabulary. The thesis started with the description of the adapted version of the
user-centered design (UCD) for deep leaning as the main methodology of this
work, a presentation of the technical background, and a review of related work
on extending touch interaction. In the first two studies presented in Chapter 3,
we focused on understanding the hand ergonomics and behavior during mobile
touch interaction. This enabled us to derive implications for the design of novel
input methods using multiple fingers and on the whole device surface. With
four studies presented in Chapter 4, we developed and evaluated two interaction
methods for commodity smartphones which identify the source of touches and
consider this information for extending the input vocabulary. Going one step
further, we presented our fully touch sensitive smartphone prototype in Chapter 5
which enables touch input on the whole device surface and identifies the fingers
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touching the device using deep learning. In addition, we interviewed experienced
interaction designers to elicit solutions for addressing the challenges of mobile
touch input using fully touch sensitive smartphones. In Chapter 6, we focus
on mobile text editing as one specific use case and present a series of studies
following the UCDDL to elicit, implement, and evaluate shortcuts for frequently
used text editing operations on fully touch sensitive smartphones.

In the following, we summarize the research contribution, answer the research
questions, and conclude with an outlook on future research directions.

7.1 Summary of Research Contributions

We contributed to three areas: (i) ergonomics and behavior of fingers for mobile
interaction, (ii) methods for identifying the source of touch using deep learning,
and (iii) solutions for addressing limitations of mobile touch input. We followed
the UCDDL for the development and evaluation of the interaction methods.

Chapter 3 focuses on understanding the ergonomics and behavior of all fingers
for mobile interaction. In Section 3.2, we studied the ergonomics of all fingers
while holding mobile devices in a single-handed grip. This contributes to the
understanding of the comfortable area and the maximum range of all fingers
which are an important basis for the design of input controls especially on fully
touch sensitive smartphones. With the study presented in Section 3.3, we investi-
gated supportive micro-movements of fingers which users implicitly perform to
maintain a stable grip, increase reachability of the thumb, and due to the limited
independence of the fingers. Understanding supportive micro-movements of all
fingers helps to minimize unintended inputs on fully touch sensitive smartphones.

Chapter 4 focuses on identifying the source of touch on commodity capacitive
touchscreens using deep learning. We contribute with two novel input techniques
for touchscreens including the development and validation of the models, as well
as an evaluation of the input techniques in realistic scenarios. We showed that
identifying and using the palm for activating functions is feasible with a high
accuracy while perceived as natural and fast by users. Moreover, we investigated
the feasibility of differentiating between different fingers and found that left and
right thumbs can be identified with a usable accuracy.
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Chapter 5 contains a technical contribution in the form of a reproducible
fully touch sensitive smartphone prototype which identifies touches of all fingers
holding the device. Further, we present a set of use cases made possible with our
prototype, and further interviewed experienced interaction designers to contribute
solutions which address common touch input limitations with our prototype.

Finally, Chapter 6 focuses on mobile text editing as a specific use case and
contributes a gesture set which was inspired by shortcuts on hardware keyboards,
elicited using a user-centered approach, and evaluated on our fully touch sensitive
smartphone. In the following, we revisit the research questions addressed in this
thesis:

RQ1: How can we design Back-of-Device input controls to consider the re-
achability of fingers in a single-handed grip? Our results presented in
Section 3.2 revealed that the index and middle finger are the most suited
for BoD input. We further reveal the areas in which the fingers can move
without changing the grip or stretching the thumb in an uncomfortable
way. Placing input controls within the comfortable area minimizes finger
movements which lead to muscle strain or to losing the stable grip which
could result in dropping the device.

RQ2: How can we design Back-of-Device input controls to minimize unintended
inputs, e.g. due to supportive finger movements caused by maintaining the
grip? The work presented in Section 3.3 analyzed and describes supportive
finger movements (e.g., to maintain a stable grip, increase the thumb’s
reachability and due to the limited independence of the fingers [76]) which
could lead to unintended inputs on the back. We derived the safe areas
which are comfortably reachable (supporting RQ1) but also entails the
least amount of unintended inputs (addressing RQ2). We further found
that the least unintended inputs occurred on a 5′′ devices due to a suitable
compromise of grip stability, reachability, and size of on-screen targets.

RQ3: How can we differentiate between fingers and hand parts on a capacitive
touchscreen? Based on the approach presented in Section 4.2, we showed
that the raw data of capacitive touch sensors can be used to reliably identify
touches of fingers and hand parts. Evaluating PalmTouch, we showed that
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the palm can be identified with an accuracy of 99.53% while perceived as
an intuitive and natural way to perform touch input. Moreover, we showed
that the left and right thumb can be identified with a usable accuracy of over
92%. In general, we found that the raw data of capacitive touchscreens
in combination with deep learning can be used to develop novel input
techniques which were not feasible before without wearable sensors or
additional sensors attached to the device.

RQ4: How can we estimate the position of individual fingers and identify them
on a fully touch sensitive smartphone? The raw data of capacitive tou-
chscreens enable to identify palm touches and differentiate between left
and right thumbs with accuracies usable for representative tasks. With our
fully touch sensitive smartphone prototype, we showed that all fingers of
the holding hand can be identified with a similar accuracy. Our prototype
enables all fingers on the back (which were previously unused) to perform
individual input. Again, we used a deep learning based approach and the
raw capacitive data of our prototype to estimate the position of indivi-
dual fingers on the device. Combined with a simple mapping approach,
individual fingers can be identified with an accuracy of 95.78%.

RQ5: Which typical touch input limitations could be solved with a fully touch
sensitive smartphone? With the support of experienced interaction desig-
ners, we derived a number of solutions and interaction techniques for fully
touch sensitive smartphones which address touch input challenges such as
the reachability issues, limited input capabilities, and the fat-finger problem.
Among others, reachability issues can be addressed by combining the range
of the thumb and the fingers on the back side. Further, a wide range of
shortcuts can be provided using finger-specific gestures on the back or
using the rear fingers’ placement as action modifiers while the occlusion
issues caused by the fat-finger problem could be addressed with moving
input controls outside of the front display (e.g., edge or back).

RQ6: How can we design and use shortcuts on a fully touch sensitive smartp-
hone to improve text editing? With four user studies presented in Chapter 6,
we focused on improving text editing on mobile devices with shortcuts as a
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specific use case. We identified text editing operations which are frequently
performed on computers via shortcuts, and conducted a gesture elicitation
study to understand how users envision to perform these shortcuts on fully
touch sensitive smartphones. With the two subsequent studies, we develo-
ped a gesture recognizer and evaluated it with realistic text editing scenarios
on a fully touch sensitive smartphone. In total, we showed that users prefer
editing text with our prototype over text editing operations recently im-
plemented on mobile operating systems, and that shortcuts significantly
improve the usability of mobile text editing tasks.

7.2 Future Work

While this thesis focused on hand-and-finger-aware interaction on mobile touch-
based devices, in the course of this work, we discovered new challenges beyond
the scope of this thesis. In the following, we point directions for future research.

Hand-and-Finger-Aware Interaction on Tangible Objects. While we ena-
bled all fingers and the palm to perform individual input on fully touch
sensitive smartphones, this concept could be transferred to tangibles with
touch sensing capability on the whole object surface. With flexible capaci-
tive touch sensors becoming inexpensive and readily available (e.g., [180]),
tangibles could recognize the hand grip for context-awareness, enable diffe-
rent fingers to perform finger-specific gestures, or use the finger placement
as a modifier. This concept enriches the input vocabulary of tangibles
without changing its form factor or adding additional input controls.

Machine Learning for Interaction with Humans in the Loop. With users
getting used to specific interaction methods, they also adapt the way they
perform input over the time to achieve the best result with the machine lear-
ning model. However, this type of input was not considered and captured
during the data collection study for training, so that models can become
unstable over time against the user’s expectation. With an online learning
approach, user interfaces could collect data and context of an interaction to
continuously improve over time and adapt to the way users perform input.
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Generalizability beyond Specific Devices. We showed the feasibility of our
interaction techniques using commodity sensors and optimized our models
accordingly. Future work could train device and sensor independent models
which work with capacitive images of every type of device (e.g., different
sizes, resolutions, and sensitivities). This could be done by training a
general model (e.g., training based on normalized, fixed-sized capacitive
images) based on data from a set of devices and evaluating it with another
set of devices.

Modeling Hand Ergonomics and Behavior for Computational Interaction.
In this thesis, we empirically studied the ergonomics and behavior of fingers
in order to derive design implications for novel interaction methods. While
we developed and evaluated novel interaction techniques based on the
design implications and further user feedback, future work could derive
mathematical models of ergonomics and behavior of fingers in order to
use computational interaction [186] for model-driven UI optimization and
derivation of novel interaction techniques.

Discoverability of Novel Interaction Techniques. While this thesis focused
on the usability and technical feasibility of hand-and-finger-awareness for
mobile touch interaction, we suggest future work to investigate methods
to communicate these interaction techniques to new users. This is an
important topic especially for bringing novel interaction methods on a new
type of mobile device (i.e. a fully touch sensitive smartphone) to the mass-
market for a wide range of users. As the affordance of touch-based input
techniques is limited, novel input techniques needs to be communicated to
improve the discoverability as emphasized by Shneiderman et al. [216] and
Norman [181].
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Huy Viet Le
Hand-and-Finger-Awareness for Mobile 
Touch Interaction using Deep Learning

Mobile devices such as smartphones and tablets have replaced desktop 
computers for a wide range of everyday tasks. Virtually every smartphone 
incorporates a touchscreen which enables an intuitive interaction through a 
combination of input and output in a single interface. Despite the success of 
touchscreens, traditional input devices such as keyboard and mouse are still 
superior due to their rich input capabilities. Touch input is limited to the two-
dimensional location of touches which slow down the interaction and pose a 
number of challenges which affect the usability. Novel touch-based interaction 
techniques are needed to extend the touch input capabilities and enable multiple 
fingers and parts of the hand to perform input similar to traditional input devices.

This dissertation presents the results of twelve studies examining how individual 
fingers as well as other parts of the hand can be recognized and used for touch 
input. We refer to this concept as hand-and-finger-awareness for mobile touch 
interaction. By identifying the source of input, different functions and action 
modifiers can be assigned to individual fingers and parts of the hand. We show 
that this concept increases the touch input capabilities and solves a number of 
touch input challenges. The contribution of this dissertation ranges from insights 
on the use of different fingers and parts of the hand for interaction, through 
technical contributions for the identification of the touch source using deep 
learning, to solutions for addressing limitations of mobile touch input.
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